

The Engineering of Model-Based
Testing: Guidelines and Case

Studies

Version 01.00.25

July 2005

Mark R. Blackburn, Ph.D.
Blackburn@knowledgebytes.net

Knowledge Bytes, LCC

Copyright © 2005, KnowledgeBytes, LCC. All rights reserved.

ActiveX® is a registered trademark of the Microsoft Corporation
DOORS® I is a registered trademark of Telelogic, Inc.
IBM is a registered trademark of International Business Machines Corporation.
Java is a trademark of Sun Microsystems, Inc.
MATRIXx is a trademark of National Instruments, Inc.
Oracle is a registered trademark of Oracle Corporation.
Rational is a registered trademark of IBM, Inc.
Simulink® and Stateflow® are registered trademarks of The MathWorks, Inc.
Testbed® is a registered trademark of LDRA LLC.
T-VEC® is a registered trademark of T-VEC Technologies, Inc.
UNIX is a registered trademark of The Open Group.
Windows® is a registered trademark of Microsoft, Inc.
Winrunner® is a registered trademark of Mercury Interactive, Inc.

Other product names, company names, or names of platforms referenced herein may be trademarks or
registered trademarks of their respective companies, and they are used for identification purposes only.

iii

CONTENTS

ACKNOWLEDGMENTS .. XV	

PREFACE .. XVII	

EXECUTIVE SUMMARY .. XIX	

1.	
 INTRODUCTION .. 1	

1.1	
 Scope .. 2	

1.2	
 Audience .. 3	

1.3	
 Organization .. 4	

1.4	
 How to Read This Document .. 7	

1.5	
 Related Documents ... 7	

1.6	
 Typographic Conventions .. 8	

2.	
 TERMINOLOGY, CONCEPTS, AND CONTEXT .. 9	

2.1	
 Terminology ... 9	

2.2	
 Component .. 10	

2.3	
 Modeling Concepts .. 11	

2.4	
 Modeling Context .. 12	

2.5	
 Requirement-Based Modeling Method and Tool ... 14	

2.5.1	
 Modeling Constructs .. 15	

2.5.2	
 Modeling Extensions ... 16	

3.	
 MODEL-BASED TESTING OVERVIEW ... 19	

3.1	
 Traditional Verification and Validation ... 19	

3.2	
 Types of Testing .. 20	

3.3	
 Process Details .. 21	

3.4	
 General Guidelines for Developing a Model .. 22	

3.4.1	
 Define the Interfaces for the Model ... 23	

3.4.2	
 Define Behavioral Model Elements ... 23	

3.4.3	
 Map the Model to Implementation Interfaces .. 24	

Contents

iv

3.5	
 Tool Process Summary ... 25	

3.6	
 Summary ... 26	

4.	
 MARS POLAR LANDER ... 27	

4.1	
 Problem ... 27	

4.2	
 Approach ... 27	

4.3	
 Implementation .. 28	

4.3.1	
 Intended Behavior ... 28	

4.3.2	
 TDM Requirements and Model ... 30	

4.3.3	
 Example Models .. 31	

4.3.4	
 Test Vector Generation ... 32	

4.3.5	
 Test Driver Generation and Execution .. 33	

4.4	
 Key Guidelines .. 34	

4.4.1	
 Use Goal-Oriented Modeling, Working Backward From Outputs 34	

4.4.2	
 Characterize Critical Behavior In Models .. 34	

4.4.3	
 Model Both Positive and Negative Cases ... 34	

4.4.4	
 Ensure That Test Driver Propagates State Data ... 35	

4.5	
 Results ... 35	

5.	
 PRINTER FEATURE PROCESSING .. 37	

5.1	
 Problem ... 37	

5.2	
 Approach ... 37	

5.3	
 Implementation .. 38	

5.4	
 Key Guidelines .. 40	

5.4.1	
 Understand the Interfaces and Test Environment ... 40	

5.4.2	
 Select a Feature That Will Change ... 40	

5.4.3	
 Ask the TAF Team for Advice ... 41	

5.5	
 Results ... 41	

6.	
 SQL EXTENSION LANGUAGE PROCESSING ... 43	

6.1	
 Problem ... 43	

6.2	
 Approach ... 43	

6.3	
 Implementation .. 44	

6.4	
 Key Guidelines .. 45	

6.5	
 Results ... 46	

7.	
 CLIENT-SERVER WEB APPLICATION ... 49	

7.1	
 Problem ... 49	

Contents

v

7.2	
 Approach ... 49	

7.3	
 Implementation .. 50	

7.4	
 Key Guidelines .. 51	

7.5	
 Results ... 51	

8.	
 DISTRIBUTED BILLING SYSTEM .. 53	

8.1	
 Problem ... 53	

8.2	
 Approach ... 54	

8.3	
 Implementation .. 54	

8.4	
 Key Guidelines .. 55	

8.5	
 Results ... 56	

9.	
 COMMAND AND CONTROL MONITORING SYSTEM .. 59	

9.1	
 Problem ... 59	

9.2	
 Approach ... 59	

9.3	
 Implementation .. 61	

9.4	
 Key Guidelines .. 63	

9.4.1	
 Adopt a Technology Transition Plan ... 63	

9.4.2	
 Use Model-Based Testing With Other Types of Testing 63	

9.4.3	
 Collaborate With Developers to Add Testability Support 63	

9.4.4	
 Use Simulation for Early and Continuous Testing ... 63	

9.4.5	
 Leverage System Internals for Analyzing Actual Test Outputs 64	

9.5	
 Results ... 64	

10.	
 TIME CARD LOGIC PROCESSING .. 67	

10.1	
 Problem ... 67	

10.2	
 Approach ... 67	

10.3	
 Implementation .. 68	

10.4	
 Key Guidelines .. 68	

10.4.1	
 Modeling Practices ... 68	

10.4.2	
 Test Vector Generation From Hierarchical Models 70	

10.4.3	
 Model Defects ... 73	

10.4.4	
 Test Vector Generation From Inlined Tables .. 74	

10.5	
 Results .. 75	

11.	
 FLIGHT GUIDANCE MODEL LOGIC .. 77	

11.1	
 Problem ... 77	

Contents

vi

11.2	
 Approach ... 77	

11.3	
 Implementation .. 78	

11.4	
 Key Guidelines .. 79	

11.5	
 Results .. 79	

12.	
 DATABASE SECURITY .. 81	

12.1	
 Problem ... 81	

12.2	
 Approach ... 81	

12.3	
 Implementation .. 83	

12.3.1	
 Modeling Security Properties .. 85	

12.3.2	
 Test Vectors .. 86	

12.4	
 Key Guidelines .. 87	

12.4.1	
 Creating a Test-Time Database .. 88	

12.4.2	
 Interface-Driven Modeling ... 89	

12.4.3	
 Modeling Positive and Negative Conditions ... 90	

12.5	
 Results .. 91	

13.	
 SMART CARD INTEROPERABILITY ... 93	

13.1	
 Problem ... 93	

13.2	
 Approach ... 94	

13.2.1	
 Architectural Overview .. 94	

13.2.2	
 Elements of System and Test Infrastructure ... 94	

13.3	
 IMPLEMENTATION .. 95	

13.3.1	
 Smart Card Middleware .. 104	

13.4	
 Key Guidelines .. 105	

13.4.1	
 Test Infrastructure ... 105	

13.4.2	
 Model Dependencies and Test Sequencing ... 105	

13.4.3	
 Requirement Traceability .. 106	

13.5	
 Results .. 107	

14.	
 MEDICAL DEVICE PRODUCT LINE .. 109	

14.1	
 Problem ... 109	

14.2	
 Approach ... 110	

14.3	
 Implementation .. 111	

14.3.1	
 Improved Test Infrastructure ... 111	

14.3.2	
 Requirement Analysis ... 112	

14.3.3	
 Design for Testability .. 112	

14.3.4	
 Modular Requirement Specifications .. 113	

Contents

vii

14.3.5	
 Model-Based Review Process .. 114	

14.3.6	
 Multiteam Model and Test Infrastructure .. 115	

14.3.7	
 Model-Based Measurement .. 117	

14.3.8	
 Configuration Control .. 118	

14.4	
 Key Guidelines .. 119	

14.5	
 Results .. 120	

15.	
 SUMMARY ... 121	

15.1	
 Summary of Key Guidelines .. 121	

15.2	
 Results and Benefits ... 123	

15.2.1	
 Test Infrastructure Established During Pilot Project 123	

15.2.2	
 Completed Project Ahead of Schedule ... 123	

15.2.3	
 Significant Reduction in Retesting .. 124	

15.2.4	
 TAF for Avionics and Aircraft Systems ... 124	

15.3	
 Conclusion ... 124	

SCR REQUIREMENT MODELING .. 127	

Monitored and Controlled Variables ... 127	

Representing Functional View ... 127	

Conditions ... 128	

Events ... 129	

Guarded Events .. 130	

Terms .. 131	

CODE COVERAGE AND STRUCTURAL TESTING ... 133	

MEASUREMENT INFORMATION PRODUCT AND MEASUREMENT CONSTRUCT137	

Attributes .. 137	

Base Measures .. 138	

Derived Measures .. 138	

Indicators .. 139	

LIST OF ABBREVIATIONS AND ACRONYMS .. 141	

REFERENCES ... 145	

Contents

viii

This page intentionally left blank.

ix

FIGURES

Figure 1. TAF Integrated Environment .. 2	

Figure 2. Conceptual Framework for Component Integration ... 11	

Figure 3. Concept of Subcomponents and Component Elements .. 11	

Figure 4. TAF-Integrated Components .. 13	

Figure 5. Simulink/Stateflow and MATRIXx Modeling Process Flow .. 14	

Figure 6. TTM Model Elements ... 15	

Figure 7. SCR/TTM Modeling Elements .. 15	

Figure 8. Hierarchical Requirements Example .. 16	

Figure 9. Requirement Links From Model to Test Vectors .. 17	

Figure 10. Linking Requirements to Table ... 18	

Figure 11. Typical V-Model .. 19	

Figure 12. Hierarchical System Levels .. 20	

Figure 13. Application by Roles ... 21	

Figure 14. Model-Based Test Automation ... 22	

Figure 15. Recursive V-Model ... 23	

Figure 16. Verification Model Elements and Tool Relationships ... 25	

Figure 17. Tool-Supported Processes ... 26	

Figure 18. Process Flow and Artifacts ... 28	

Figure 19. Mars Polar Lander Details .. 29	

Figure 20. TDM Requirements (From Lockheed Martin) ... 30	

Figure 21. Behavioral Specification for First_Marked_Bad ... 31	

Figure 22. Behavior Specification for TDM_thruster .. 32	

Figure 23. XPIF Test Execution Environment ... 37	

Figure 24. XPIF Modeling Scenario ... 38	

Figure 25. Test Results Report Generation ... 40	

Figures

x

Figure 26. SQL Extension Test Environment .. 45	

Figure 27. Model Representation of structured_type_create .. 46	

Figure 28. WinRunner Test Execution to Web Client .. 50	

Figure 29. Conceptual Process Flow of Billing Record ... 53	

Figure 30. Distributed Billing System Modeling and Test Artifacts .. 54	

Figure 31. Distributed Billing Application Test Execution .. 55	

Figure 32. Model Hierarchy ... 60	

Figure 33. Model and Test Automation Overview ... 61	

Figure 34. Fully Automated Test Automation Process Flow for XYZ Testing 62	

Figure 35. Time Card Logic Modeling Process ... 67	

Figure 36. Time Card Logic Model .. 68	

Figure 37. Time Condition Table for total_out ... 69	

Figure 38. Term Table for Regular Hours .. 69	

Figure 39. Term Table for Minimum Hours .. 70	

Figure 40. Term Table for Ordered Conditions .. 70	

Figure 41. Hierarchical Model and Translated Representation ... 71	

Figure 42. Hierarchical Subsystem Relationships ... 72	

Figure 43. Project Status for Time Card Model ... 72	

Figure 44. Hierarchical TTM Model ... 73	

Figure 45. Model Defect Traceability to TTM .. 74	

Figure 46. Inlined Subsystems Included in Higher-Level Subsystems .. 75	

Figure 47. Project Status for Time Card Model With Inlined Term Tables 75	

Figure 48. Model Evolution and Analysis .. 78	

Figure 49. Fagan Inspections Versus TAF/T-VEC .. 79	

Figure 50. Detailed Process Flow .. 85	

Figure 51. Example Model for Grant Object Privilege ... 86	

Figure 52. GSC-IS Architectural Model ... 94	

Figure 53. Elements Created to Support Task Development .. 95	

Figure 54. GSC-IS Smart Card Modeling Process Overview .. 96	

Figure 55. Partial State Representation of BSI .. 98	

Figure 56. Condition Table for gscBsiUtilConnect ... 99	

Figures

xi

Figure 57. Condition Table for tmGscBsiUtilConnect .. 100	

Figure 58. Dependency for gscBsiPkiGetCertificate Outputs .. 101	

Figure 59. Condition Table for gscBsiPkiGetCertificate .. 102	

Figure 60. Condition Table for tmGscBsiPkiGetCertificate .. 102	

Figure 61. Model for tmGscBsiUtilAcquireContext .. 103	

Figure 62. Smart Card Middleware for Automated Test Execution ... 104	

Figure 63. Partial State Machine for Context Acquired ... 106	

Figure 64. Smart Card Requirement Traceability .. 107	

Figure 65. Conceptual Components of Example Medical Device System 111	

Figure 66. Organization of Requirement Feature .. 113	

Figure 67. Models Represent Interfaces and Required Behavior .. 114	

Figure 68. Roles in Test Driver Development .. 116	

Figure 69. Test Infrastructure Organization ... 117	

Figure 70. Process View of TAF Measurement ... 118	

Figure 71. Test-Related Artifacts for Configuration Management ... 119	

Figure 72. Top-Level Concept for Defining SCR Models .. 127	

Figure 73. Conceptual SCR/TTM Model of Table Dependencies ... 128	

Figure 74. TAF Model Coverage Versus Code Coverage ... 133	

Figure 75. LDRA and TAF Integration ... 135	

Figure 76. Simple Model for Code Coverage Example ... 135	

Figure 77. Coverage Analysis Screenshot .. 136	

Figure 78. Measurement Construct ... 137	

Figure 79. Measurement Construct Example .. 140	

Figures

xii

This page intentionally left blank

xiii

TABLES

Table 1. Application Summary ... 2	

Table 2. Test Vectors for TDM_thruster .. 33	

Table 3. FGS Analysis Details ... 79	

Table 4. Mapping of Specifications to Interfaces ... 83	

Table 5. Test Vectors for Grant Object Privilege ... 87	

Table 6. Detailed Security Specification Analysis .. 90	

Table 7. TAF Base Measures .. 138	

Table 8. TAF Derived Measures .. 138	

Tables

xiv

This page intentionally left blank

xv

ACKNOWLEDGMENTS

The authors wish to thank

• Steve Allen, Mark B. Hall, Verlin Kelly, and Gerald Adams from Lockheed Martin

• Mike Polen from the Systems and Software Consortium, Inc.

• Chris Snyder, the key developer of the DOORS integration into TAF

• Roberta Troy, Documentation Consultant, for providing technical editing that enhanced the
readability of this report

This work and the case studies described in this work were performed in conjunction with the
Software Productivity Consortium (SPC) and Systems and Software Consortium (SSCI). At the
closing of SSCI, the rights of this document were turned over to the author, Dr. Mark R. Blackburn.

Acknowledgments

xvi

This page intentionally left blank

xvii

PREFACE

The purpose of this report is to explain the benefits, findings, and recommendations for adopting
model-based testing. This report leads readers through a series of case studies that highlight
member stories related to improving requirements, design, and systematic test, all fostered by the
structure that model-based testing can impose on an organization to improve the ill-structured
traditional testing processes.

The title of this report comes from reflecting on the experiences of a few members that have
progressed small pockets of their organizations into the engineering of model-based testing. The
report explains many of the hidden benefits related not only to more effective testing but also to
improved requirements and design. The last case study in this report reflects on this mature
approach to model-based testing that has been implemented in a few member companies.

How to Read This Report
This report is long, and readers should use this report as a reference by reading the case studies of
interest based on the applicability of the problem and application area or the related guidelines that
are covered in that case study.

• Introduction
• Terminology, Concepts, and Context
• Model-Based Testing Overview

• Mars Polar Lander
• Printer Feature Processing
• SQL Language Extension Processing
• Client-Server Application
• Distributed Billing System
• Command and Control Monitoring

System
• Time Card Logic Processing
• Flight Guidance Model Logic
• Database Security
• Smart Card Interoperability
• Medical Device Product Line
• High-Assurance Systems

• Summary of Key Guidelines
• Member Results and Benefits
• Conclusions

Case Studies

Summary

• Problem
• Approach
• Implementation
• Key Guidelines
• Results

Traceability
Links Back

to Case Study
Examples and

Guidelines

Appendices
Details on modeling, coverage, and

measurement

Case Studies Format

Report Road Map

Preface

xviii

The following list describes how different audiences can use this report:

• Senior Executives will want to read the Executive Summary and Section 15, the
Summary, which provides return on investment (ROI) results claimed by Consortium
members.

• Manager and Project Leads should read the Executive Summary and skim through
Section 1.3, the Organization that give a general overview of each case study and the
guidelines illustrated within each case study. The Summary section is useful, as it
provides ROI, and a summary of the guidelines that are linked back to the case
studies.

• New to model-based testing. Read Sections 2 and 3 to gain awareness of the
terminology used in this document. Browse the case studies in Sections 4 through 14
to see how the same general model-based testing process is applied to a wide variety
of applications.

• Some experience with modeling. Skim Sections 2 and 3 to gain awareness of the
terminology used in this document. Browse the case studies in Sections 4 through 14
to see how the same general model-based testing process is applied to a wide variety
of applications. Be sure to read the subsection titled Key Guidelines near the end of
each case study to get specific guidance and pointers to more detailed information.

• Advanced perspective on organizing for multiteam, model-based test
engineering. Section 14 pulls all the guidelines together and provides a historical
perspective on evolving an organization into a multiproject, and multi-program
engineering team that integrates model-based testing into the overall system and
software development process.

xix

EXECUTIVE SUMMARY
...even without any understanding of the system or requirements, the systematic process of the
model-based test generation resulted in tests that were able to find the bug that is the likely cause
of the Mars Polar Lander crash…paraphrase from Robert Knickerbocker – Member Forum

… the Collins lead for this pilot estimated that a Level A Flight critical project could save up to 52%
of its total software development costs using a full model-based development environment,
including auto-code and auto-test. [Consortium 2000]

Traditional testing is not working. Arguably, there are a few pockets of excellence, but to provide the
quality and reliability of complex systems, testing must be engineered just like systems must be
engineered. Poor quality starts with poor requirements. Model-based test engineering improves
requirements to reduce program risk, while increasing the testability of the design, along the
systematic testing of the implemented system.

The author has worked with members on many modeling applications in various application domains
using requirement- and design-based modeling and test generation tools to reduce requirement
defects and testing cost and effort, while improving quality and reliability. However, these
applications and the benefits derived are not well-known. Managers and lead project engineers often
are skeptical about trying modeling on their applications or systems.

Use of Case Studies

This report dispels many common technology adoption concerns by removing member proprietary
information that has been captured since the pilot efforts in the late 1990s. The report provides
examples and case studies for various applications, recommended approaches, and benefits derived
from requirement modeling and model-based testing. These case study results should provide
evidence for project managers and leads to justify a pilot project trial that will give them concrete
evidence of the benefits and relevancy of this approach to their applications. The report blends
documented examples, experiences, and lessons learned of past users with guidelines for
requirement and interface modeling, supporting requirement defect identification and verification of
different types of applications that will be beneficial to engineers.

Benefits to Member Companies

The audience for this report includes software and system engineers involved in requirements,
design, and verification of software-intensive systems. This report integrates the concept of
requirement modeling to support verification and validation, with test generation, and test driver
generation to support the use of the models in the process of testing. The report provides guidance
for a wide spectrum of application-based situations faced by developers and testers, which
organizations can leverage in many different application areas. The report also discusses

Executive Summary

xx

organizational best practices and provides the guidance in a prescription and example-driven
manner.

The key benefits of the report include the following:

• ROI evidence for senior management and decision makers

• Evidence to managers and project leads that requirement modeling and model-based testing
have been successfully applied on a wide range of application

• Better understanding of the possible applications of this technology and more specific data on
the benefits that members have experienced

• Examples for line engineers that are more beneficial than generic training examples or simple
tutorials

• Evidence that organizations that have applied the Test Automation Framework (TAF) are
reducing cost and schedule through early identification and removal of requirement defects,
better design for testability, better organization and allocation of requirements, and
systematic automated testing

• Key best practice guidelines that are linked to case study examples

1

1. INTRODUCTION

This report is based on lessons learned by the Systems and Software Consortium, Inc. (SSCI) and
members from deploying various types of modeling capabilities since 1996. This report presents
information in the following manner:

• Uses a case studies format to discuss how organizations used specific tools to support
requirement analysis, modeling, design for testability, and testing

• Discusses challenges, findings, recommendations, and best practices observed from the
use of model-based testing tools

• Reflects on tool requirements that are essential for organizational adoption, including:
− Support for requirement-to-test traceability from requirement management tools
− Requirement and design modeling
− Model-based test generation
− Automated test execution and analysis
− Test coverage analysis.

In addition, these model-based testing tools have qualification evidence to support use on safety-
critical applications.

The integrated environment, generically referred to as the Test Automation Framework (TAF),
integrates government and commercially available requirement and design modeling tools with test
generation tools. TAF integrates the DOORS requirement management tool with the T-VEC Tabular
Modeler (TTM) that supports the Software Cost Reduction (SCR) method [Alspaugh 1992] for
requirement modeling. DOORS integrates also with Simulink, which supports design-based models,
and TAF integrates requirement models with design models to provide full traceability from the
requirements source to the generated tests, as shown in Figure 1. It integrates also with code
coverage tools produced by LDRA and Rational/IBM as well as open source tools such as GNU.

1. Introduction

2

Figure 1. TAF Integrated Environment

1.1 SCOPE

This report integrates example applications with specific guidance for using an engineering-based
approach to requirement and verification modeling to support requirement analysis and continuous
automated testing based on the use of TAF and T-VEC. The report provides a series of modeling
problems described as case studies. Each section provides guidelines that increase in complexity
while covering various types of modeling situations that developers typically face.

This report addresses the relationship of the developed models to the associated tests and test
environment. It describes approaches for developing the test drivers derived from models and
explains the relationship between a hierarchical set of models and the associated tests that would be
injected into implementations or simulations. It also discusses the concepts of model-based
coverage as well as code coverage.

The report discusses some of the applications shown in Table 1 that cover software unit, integration,
and system-level testing.1 The models typically describe the functional requirements of a system or
component, but one application describes security requirements for a database. The target
implementations range from web-based to embedded systems on various platforms and operating
systems (OS) and test drivers (aka test scripts) that were generated to support automated test
execution in many languages and data formats.

Table 1. Application Summary

Application Level System/Component OS Test Language
Database Security System Oracle Win2K, XP Perl/Java/JDBC
Smart card interoperability System Reference implementation Win2K, XP Java
SQL extension language processing System Parallel Database Win2K SQL extension
Copier/printer feature processing System Custom hardware Unix XML
Client-server web application System Web-to-database Win2K/IE Winrunner
Client-server System Tracking and certification Win2K/CISC DynaComm
Distributed billing system System Custom application Unix Perl
Umanned vehicles System Brake control Unknown VB-like

1 Because of time limitations, the authors could not cover the unmanned vehicle, sonar, and utility applications

in this version of the case studies. For information on any of these applications, contact the author.

SimulinkSimulink

T-VEC SystemTTM/SCR

• Design Capture
• Simulation
• Code Generation

•Static Model Analysis
•Test Generation
•Coverage Analysis
•Test Driver Generation
•Test Results Analysis

• Requirements Capture
• Bridge From Informal Requirements to

Formal Design

Simulink
Tester

Simulink
Tester

Requirements/Design Capture
Captured Model Translation

DOORS

1. Introduction

3

Application Level System/Component OS Test Language
Mars polar lander Software unit Touch down monitor Win2K C
Command control for ship System System monitor UNIX Slang script
Medical devices Integration Mode switch UNIX/custom C-like (custom)
Medical devices Integration Monitoring and method selection Custom Custom
Medical devices Integration Internal management UNIX/custom C-like (custom)
Flight guidance mode logic Unit/integration Mode logic Custom Java
Avionics monitoring System Cruise energy management Custom SWAT (custom)
Mission management System Stores management Custom SWAT (custom)
Sonar Unit/integration Mode control Custom HTML
Utility Unit Transfer time conversion UNIX C
Time card processing System Time card rules processing Win2K, XP Data file

1.2 AUDIENCE

The report is intended for program managers, project managers, project engineers, requirement
engineers, designers, test engineers, technologists, quality assurance personnel, certification
authorities, and line engineers that perform a variety of development and test functions. The benefits
include the following:

• Program managers can use the report to understand the benefits derived from better
understanding of the requirements with continuous testing to reduce the overall cost while
achieving increased reliability and quality.

• Project Managers and Project Engineers can use the report to obtain a general awareness
of the processes, models, and tools that are required to adopt model-based testing.

• Quality Assurance and Certification Authorities can use the report to help assess
compliance with well-defined processes, standards, guidance on qualified tools, and related
development and verification artifacts.

• Line Engineers should benefit from the examples, experiences, and lessons learned of past
users that are documented throughout the case studies. The report provides guidelines and
examples for requirement and interface modeling supporting requirement defect identification
and verification of different types of applications that should be beneficial to line engineers.

• Test Engineers can use these guidelines to assist in selecting techniques and heuristics for
developing verification and validation models that provide thorough requirements test
coverage while also creating a detailed mapping between the requirement engineer’s
requirements information and the design/implementation engineer’s design specifications.

• Requirement Engineers can use these guidelines to better understand how their work will
be used for requirement analysis. The requirements engineer should learn how to use the
results of such analysis to fill in important gaps in requirements information and correct
defects and ambiguities in the requirements already specified. In addition, model-based
analysis supports validation of the requirements to better ensure that the final product meets
the custom need.

• Designers/Implementers can use these guidelines to better understand the importance of
designing a system for testability and how their work is used to support early development of

1. Introduction

4

test drivers and how the application of these test drivers can be used to complement the
debugging process. In addition, the design/implementation engineer should learn how to use
test failure information continuously during the development process to enhance the final
product. The design engineer should better understand the importance of identifying and
specifying complete information for the system interfaces, including data value ranges and
type representation.

1.3 ORGANIZATION

The report is structured as follows:

• Introduction. Section 1 provides a general introduction to the scope of the report, an
overview of the case studies, and guidelines for reading this report.

• Terminology, Concepts, and Context. Section 2 provides some definitions, introduces
modeling concepts and tools, and provides a summary of the TAF capabilities, including a
recommendation for its use by the United Kingdom Ministry of Defence (UK MoD) for use on
high-assurance systems. This section briefly discusses TAF’s design modeling support and
relationship to other tools.

• Model-Based Testing Overview. Section 3 provides introduces the general process for
requirement-based modeling and automatic test generation. Each case study and nearly all
TAF usage follow this general pattern.

• Mars Polar Lander. Section 4 is a case study on the Mars Polar Lander (MPL) application. It
provides a comprehensive, but high-level description of the model-based testing process.
The key guidelines include:

− Goal-driven modeling, modeling threads of an application as opposed to the entire
application

− Specifying the negative cases of a requirement
− Design of pattern for test driver generation for applications with state data

• Printer Feature Processing. Section 5 describes a case study for modeling the Printing

Instructions Format Specification (XPIF) of the Internet Printing Protocol (IPP) and associated
embedded application testing. The key guidelines include:

− Importance of understanding the interfaces and test environment before modeling
− Selecting an application feature for a pilot project
− Guidelines for selecting an initial projects

• SQL Extension Language Processing. Section 6 is a case study that describes the

modeling for a language extension to the Standard Query Language (SQL) for a parallel
database management system. The key guidelines include:

− Modeling a programming, scripting, or command language grammar associated and the
generated tests that cover all the combinations of the possible language statements

− Constructing language commands during test driver generation

1. Introduction

5

• Client-Server Web Application. Section 7 provides a case study for modeling a web-based
application that integrates with a database server. It describes how test drivers are produced
to use the WinRunner tool to support the GUI-based test execution. The key guidelines
include:

− An effective technology adoption process
− Use of the WinRunner application program interface (API) functions to support automated

test execution

• Distributed Billing System. Section 8 describes the case study for a component of a
distributed billing system. The key guidelines include:

− How to produce models and generate test cases in one environment that execute in a
different target environment

− Test drivers that dynamically generate test data in real time
− Embedded test driver that monitors and logs the outcomes of the test driver executing in

the target environment to be used in the test results analysis

• Command and Control Monitoring System. Section 9 is a case study associated with a
monitoring component for an onboard command and control system, and the estimated ROI.
It summarizes key guidelines:

− Effective technology adoption approach combined with pilot project and tailored training
− Using a simulator for test execution
− How to use the modeling to drive improvements in the design of the target system and

simulators
− Leveraging an embedded data recorder to capture the actual outputs of a tests

• Time Card Logic Processing. Section 10 is a case study that describes the modeling of

business rules of a component of an information technology (IT) company. This case study
illustrates a good first application for an organization that wants to learn how to do test
automation that also has limited documentation of the requirements. This section uses this
simple example to summarize key guidelines:

− Modeling practices such as naming conventions, the use of constants, and traceability
links

− Terms that can be reused throughout the model
− Test vector generation from hierarchical models
− Model defects
− Traceability to requirements
− Test generation from inlined models

• Flight Guidance Model Logic. Section 11 is a case study on one of the early applications of

TAF applied to the Flight Guidance Mode Logic of an avionics system. This case study
documents the finding by a member company and describes the importance of applying
requirement-based modeling and testing. It discusses how the tools helped uncover 52 of 85
defects that were not identified using manual inspection processes. The key guideline
discusses the judicious use of modeling with event specification.

1. Introduction

6

• Database Security. Section 12 is a case study that describes the modeling of functional
security requirements for the Common Criteria of the Oracle8 Database Server. The key
guidelines include:

− Modeling the dynamic generation of database content that avoids the costly effort of
developing and maintaining a “gold” database

− Modeling the positive as well as negative cases that represent potential security violations
− Analysis of the interface and requirement dependencies
− Design of model and test driver object mappings that provide reuse to reduce cost and

maintenance

• Smart Card Interoperability. Section 13 is a case study that describes the modeling for the
Government Smart Card Interoperability Specification (GSC-IS) of the National Institute of
Standards and Technology (NIST). The key guidelines include:

− Importance of test driver generation and test infrastructure middleware to support test
execution and logging

− Modeling of dependencies and the relationship to test sequencing
− Uses of requirement traceability

• Medical Device Product Line. Section 14 is a case study describes the multiphased

technology adoption by a company that produces product families of life-critical medical
devices. The key guidelines include:

− Improved requirements process
− Improved test infrastructure
− Design for testability
− Modular requirement specifications
− Organizational adoption process
− Multiteam model and test infrastructure organization
− Modelbased review practices
− Cost benefits of modeling requirement early
− Model-based measurement for project management
− Configuration management of model-based artifacts

• Summary. Section 15 provides a summary and conclusions.

• SCR Requirement Modeling. Appendix 0 provides a brief overview of the SCR modeling
method and concepts.

• Code Coverage and Structure Testing. Appendix 0 discusses the difference between code
coverage, structural testing, and model coverage.

• Measurement Information Product and Measurement Construct. Appendix 0 provides
measurement concepts and information underlying TAF measurement.

1. Introduction

7

1.4 HOW TO READ THIS DOCUMENT

The following list describes how to get the most out this document, based on the reader’s level of
modeling experience:

• New to model-based testing. Read Sections 2 and 3 to gain awareness of the terminology
used in this document. Browse the case studies in Sections 4 through 14 to see how the
same general model-based testing process is applied to a wide variety of applications.

• Some experience with modeling. Skim Sections 2 and 3 to gain awareness of the
terminology used in this document. Browse the case studies in Sections 4 through 14 to see
how the same general model-based testing process is applied to a wide variety of
applications. Be sure to read the subsection titled Key Guidelines near the end of each case
study to get specific guidance and pointers to more detailed information.

• Advanced perspective on organizing for multiteam, model-based test engineering.
Section 14 pulls all the guidelines together and provides a historical perspective on evolving
an organization into a multiproject and multiprogram engineering team that integrates model-
based testing into the overall system and software development process.

1.5 RELATED DOCUMENTS

The interaction with members using TAF has helped spawn other reports related to this capability,
such as reliability, measurement, subcontract compliance sign-off, and safety-critical systems.
Following is a list of related products:

1. Objective Measures for V&V and Software Reliability, White Paper [SSCI 2005]

2. Guidance for Achieving Mission Assurance in Software-Intensive Systems, Technical Report
[Consortium 2004a]

3. Model-Based Verification and Validation for Security Requirements of Systems, Technical
Report [Consortium 2004b]

4. Requirement-Based Verification Sign-Off for Subcontract Integration Compliance, Technical
Report [Consortium 2004c]

5. Automatic Code Generation: State of the Practice, SPC Technical Report [Consortium 2004d]

6. Strategies for Web and GUI Testing, Technical Report [Consortium 2004e]

7. Model-Based Development and Automated Testing, Course [Consortium 2003a]

8. Testing Complex Systems, Course [Consortium 2003b]

9. Guidelines for Software Tool Qualification, Technical Report [Consortium 2003c]

10. Guidelines for Using Test Automation Framework Measures, Technical Report [Consortium
2003d]

11. Test Automation Framework for T-VEC and Simulink, Course [Consortium 2003e]

12. Mars Polar Lander Fault Identification Using Model-based Testing [Blackburn 2001]

13. Applying the Test Automation Framework With Use Cases and the Unified Modeling
Language, Technical Report [Consortium 2002]

1. Introduction

8

14. Specification Transformation to Support Automated Testing, Technical Report [Consortium
1998]

15. Test Automation Framework, [Consortium 1997]

1.6 TYPOGRAPHIC CONVENTIONS

This report uses the following typographic conventions:

Serif font ... General presentation of information

Italicized serif font Publication titles and names of words or expressions used
in grammar rules

Boldfaced italicized serif font Run-in headings in bulleted lists

Boldfaced serif font Section headings and emphasis

Courier New font Algorithms or code fragments

9

2. TERMINOLOGY, CONCEPTS, AND CONTEXT

This section does the following:

• Defines terms and concepts

• Provides some background information to set the context for the report and some general
process information for using requirement-driven modeling

• Describes the basic elements of a model and presents primary modeling concepts and
related foundational principles.

2.1 TERMINOLOGY

Terminology can be a source of confusion; therefore, this section provides definitions for terms used
in this report. Some definitions refer to requirement concepts, while others refer to elements of the
target system that is designed or implemented.

• Architecture. Specification of component relationships and their input and output interfaces.

• Component. Software item for which a separate specification is available.

• Functional Design Specification. Captured description of the functional design.

• Functional Design. How a functional requirement specification is satisfied.

• Functional Requirement Specification. Description of the input-to-output relationships of a
component with respect to its interfaces within the environment.

• Functional Requirement. Captures the nature of the interaction between a component and
its environment.

• Implementation. How a functional design specification and nonfunctional requirements are
satisfied.

• Model. (1) See Section 2.3; (2) sometimes used in a less formal manner to refer to a
structure of elements and the heuristics for relating the elements.

• Nonfunctional Requirements. The “ilities” (e.g., reliability, availability, maintainability,
testability, enhanceability) that result in constraints on the design that manifest themselves in
the implementation.

2. Terminology, Concepts, and Context

10

• Requirement Thread. Functional requirement for a component output.

• Specification. Used generically to refer to functional requirement, functional design, or test
specifications; sometimes the word model is used synonymously with the word specification.

• Test Vector. Includes test inputs, test input values, expected outputs, expected output
values, and a mapping of each test to the associated specification element.

• Thread. Execution sequence; can span components and architectural levels.

• Validation Model. A refinement of a product focused on supporting test automation. A
validation model represents the correct, complete, consistent, and testable requirements but
describes functional behavior in terms of the architecture that is represented by the
requirements. 2

• Validation. Evidence that the right product is defined in the requirements. 3

• Verification Model. A refinement of a requirement focused on supporting test automation. A
verification model represents the requirements but describes functional behavior in terms of
the interfaces that are represented by a design and associated implementation.

• Verification. Evidence that the product was built to the requirements defined.4

2.2 COMPONENT

SSCI members typically produce large and complex components that are composed of other
components (subcomponents). Figure 2 depicts the conceptual context for integrating a component
into an overall system architecture. The term component is used generically to refer to an element of
a larger system. A component can be software only or some combination of software and hardware.
The specification of the component defines the interfaces and the behavior of some Component C.
The integration of a component must be correct syntactically, which means that the interfaces to
exchange information (e.g., messages, parameters, data structures) are syntactically interpreted
consistently by Component C and Architecture A. A common integration problem is related to the
inconsistent interpretation of the behavioral requirements associated with the semantics of
processing and producing the information of Component C (e.g., the number representing distance
produced by C is in feet but should be in meters). The model-based analysis and testing case
studies discussed in this report address defining interface and behavioral requirements of a
component.

2 Supplied and requested for inclusion by Lockheed Martin.
3 Supplied and requested for inclusion by Lockheed Martin.
4 Supplied and requested for inclusion by Lockheed Martin.

2. Terminology, Concepts, and Context

11

Figure 2. Conceptual Framework for Component Integration

A component can include other components as shown in Figure 3. Subcomponents such as C.1
through C.5 may support large sets of high-level functions at an enterprise level or low-level
functions such as software packages for communication processing, data processing, operating
system control, or data storage. Therefore, the specification of Component C must be refined by the
designer or architect into a number of lower-level specifications such as C.1 through C.5. The model-
based analysis and testing also addresses component integration and verification.

Figure 3. Concept of Subcomponents and Component Elements

2.3 MODELING CONCEPTS

Engineers use different types of models everyday. Models are used to help manage complexity
when describing aspects of a system within different system contexts; this is sometimes referred to
as abstraction.

For example, the source code of a program is a model. A compiler transforms it into a form that can
be loaded into the target machine to fully enact the essence of the model. Any program developer
knows that it takes rules to construct a working system from a model defined as source code
statements.

The most obvious use of a model is to characterize a program’s function using requirement and
design specifications. Using artifacts captured within a model, developers can use processes such
as verification⎯including testing, analysis, and reviews⎯to assess the compliance of a program with
its specifications. A model must have the following characteristics:

Specification C

Architecture AArchitecture A

Specification for component
C required for “plug-in” to
Architecture A

Component
C

Component
C

Component plugs
into architecture

Interface

Behavioral
(Semantics)

C.5

C.2

C.3 C.4

C.1

Component CSpecification C.1

Interface

Behavioral
(Semantics)

2. Terminology, Concepts, and Context

12

• A modeling language

• Rules for using the model, typically referred to as a method

• A structure for organizing and relating the artifacts of the model

2.4 MODELING CONTEXT

The TAF/T-VEC method and tools were designed originally to support the verification and validation
of high-assurance applications. TAF/T-VEC has been used in Federal Aviation Administration (FAA)
and Food and Drug Administration (FDA) projects, and several members are planning to use TAF/T-
VEC on programs that require certification or sign-off by these agencies. In addition, the UK MoD
has assessed it and recommends its use. Some of the unique characteristics of TAF/T-VEC that are
discussed in this section include the following:

• Supports both validation and verification

• Provides tool qualification for FAA/DO-178B [and the FDA

• Has been applied to safety-critical applications dating back to Traffic and Collision Avoidance
System (TCAS) certification in 1990

• Identifies model defects early to reduce expensive rework

• Can be used to prove safety properties about models

• Has been applied to security threat modeling

• Generates tests from requirement or design models

• Verifies full test coverage with at least one test per requirement

• Works on any platform

• Provides full requirement-to-test traceability

• Generates measurement and status reports

• Integrates with modeling, requirement management, and code coverage tools

The TAF method for requirement and design-based model and verification was defined to meet the
desired dependability requirements through the use of a constructive approach. This method, when
applied with supporting tools, provides significant support for preventing and removing faults. The
method provides the engineering rigor for allowing systematic specification analysis and automated
specification-based testing. In addition, with appropriate metrics collection and metrics models, the
resulting test data provides significant information to forecast system dependability parameters.

The TAF method is an engineering approach that uses related models for capturing architectural,
requirement, design, implementation, and test specifications that are fundamental to the
specification, verification, documentation, and implementation phases of software development. The

2. Terminology, Concepts, and Context

13

method provides rules for managing requirement complexity through hierarchical and inheritance
relationships of reusable specifications. The underlying processes help flush out requirement
problems during the early stages of the project development.

TAF integrates various model development and test generation tools to support defect prevention
and automated testing of systems and software. Although other modeling tools have been developed
for TAF, Figure 4 shows only those component elements that have tool qualification support.

Figure 4. TAF-Integrated Components

The case studies primarily discuss TAF’s support for model analysis and test generation for
requirement-based tools. However, TAF supports model analysis and test generation for design-
based modeling, simulation, and code-generation tools such as MATRIXx and MathWorks’ Simulink
and Stateflow tools. Each of these tools integrates with T-VEC through a translator, which transforms
each respective model into a form suitable for processing by T-VEC. Once a model is translated,
users can generate tests using T-VEC through a graphical user interface (GUI) or command-line
interface. TAF also integrates with requirement management tools such as DOORS. This integration
allows requirements to be traced through the models to the test vectors and test drivers. When a
failure occurs, the source of the failure can be traced back through the vectors, to the model, and to
the requirements. Also, TAF integrates with different test-code coverage tools (e.g., Rational Test
Realtime and LDRA’s Testbed); see Appendix 0 for more details.

For design-based modeling approaches, the process tends to resemble the illustration in Figure 5.
Simulink/Stateflow and MATRIXx are hybrid, control system modeling and code generation tools. In
this scenario, models undergo translation and static analysis to verify their integrity. Model problems
are reported by the T-VEC tools to the engineer responsible for constructing the model for immediate
correction. Once modeling is complete, the model is used as the basis for developing tests. Through
dynamic analysis (i.e., execution) of the system, anomalies in the model and implementation can be
identified and corrected.

Execution and
Results Analysis

Model-Based
Coverage
Analysis

Test
Generation

T-VEC Test Vector
Generation System

Test Driver
Generation

Execution and
Results Analysis

Model-Based
Coverage
Analysis

Test
Generation

T-VEC Test Vector
Generation System

Test Driver
Generation

TAF
Model

Translators

Modeling
Environment

MATRIXx
SCR/T-VEC

Tabular Modeler Simulink/Stateflow

Functional Tabular Control System/State Machine/Hybrids
Requirement-Based Design-Based

Requirement
Management

(DOORS)

Code
Coverage

(Rational, LDRA)

(…others)

2. Terminology, Concepts, and Context

14

Figure 5. Simulink/Stateflow and MATRIXx Modeling Process Flow

2.5 REQUIREMENT-BASED MODELING METHOD AND TOOL

The case studies in this report are based on the modeling approach referred to as the SCR method
and a tool called TTM that extends the SCR method. This section discusses a few details about the
SCR modeling concepts and rules for using SCR for requirement-based automated testing. Images
of TTM model elements are used throughout the case studies. This section introduces the TTM tool
and briefly describes a few features that extend the SCR method. Appendix 0 provides additional,
more fundamental details about the SCR method. For other specific guidance, the TTM tool has
embedded help and a user’s guide that provides details about the SCR method, along with tutorials
to lead a user in developing models.

As shown in Figure 6, there are nine model element classes in TTM:

1. Info

2. Requirements

3. Types

4. Constants

5. Inputs

6. Assertions

7. Mode Machines

8. Terms

9. Outputs

The Types, Constants, and Inputs are related directly to the interfaces that must be defined for a
component. Functional behavior is specified using combinations of Assertions, Mode Machines,
Terms, and Outputs. The model element Info supports user-defined information; for example one

2. Terminology, Concepts, and Context

15

member uses it to manage the configuration control version of the model. The Requirements
element is a feature discussed in greater detail in Section 2.5.2.

Figure 6. TTM Model Elements

2.5.1 MODELING CONSTRUCTS

Simplistically stated, the SCR method is based on the use of decision tables and state machines to
describe required behavior of some component. The structure for organizing and relating SCR model
elements is based on tables, as shown in Figure 7. Tables are used to define data types and
variables of the problem. Variables can be defined in terms of primitive types (e.g., Integers, Float,
Boolean, Enumeration), or user-defined types. The behavior is modeled using combinations of tables
that define functional aspects of the problem using a form of state machines (called Mode Tables),
Condition, or Event Tables.

Figure 7. SCR/TTM Modeling Elements

Model Elements

SRS

Function
List

Change
Request

Requirements
(come in many forms)

Behavior
Conditions Events Mode Machines

Interfaces

Data Types

Constants

Variables

Requirement
Modeling and
Clarification

Defining
Product/Component

Interfaces

2. Terminology, Concepts, and Context

16

The development of a model relates what system components have to do and how they have to do
it. Then, through the generated tests, the model provides a measure of how well a target
implementation satisfies the modeled requirements. The elements of “how” a system has to do its
function is defined in terms of a set of interfaces specified with model variables and their associated
data types. From a high-level perspective, models specify behavior relating input variables to output
variables. Models also can represent behavior in terms of historical variables that are referred to as
modes or terms.

2.5.2 MODELING EXTENSIONS

Member company use has guided extensions to the TTM tool, and SSCI plans several more. This
section discusses two extensions: requirements and model includes.

2.5.2.1 Requirements Management

TTM manages requirements through a hierarchical decomposition (i.e., outline format) where each
requirement is composed of the following:

• Tag. A unique identifier for the requirement comprised of letters, numbers, underscores and
periods.

• Description. A single line of text further describing the requirement.

• Comment. Any additional text.

The hierarchy of requirements is managed through the model view, and requirements are
decomposed by creating child requirements that display below their parents within the model view,
as shown in Figure 8. Requirements are then linked to the model as shown in Section 2.5.2.2.

Figure 8. Hierarchical Requirements Example

2. Terminology, Concepts, and Context

17

2.5.2.2 Requirement-to-Test Traceability

This section provides an example to explain the process for linking DOORS requirements to the TTM
requirements model. The tool support for requirement-to-test traceability involves linking various
sources of requirements through the model. The model transformation, test vector generation, and
test driver generation provide the tool support to link the requirements to the test vectors, test
drivers, and test reports. The process, as shown in Figure 9, has three basic steps:

1. A DOORS module is imported into the TTM. There are options to add or delete a DOORS
module to TTM or synchronize DOORS modules when they are updated. There is a one-to-
one correspondence between a DOORS ID and a TTM requirement ID.

2. Imported requirements maintain the outline structure that they have within the DOORS
environment. One or more DOORS requirements can be linked to an element of a TTM
model (e.g., condition/assignment) as shown in Figure 9, or linked to a higher level in the
TTM model, such as a condition, event, or mode table as shown in Figure 10.

3. The model translation maintains the link between the requirement ID, and during test
generation, the requirement link is an attribute of the test vector. During test driver
generation, requirement IDs can be output to the test driver to provide detailed traceability to
the executable test cases.

TTM provides requirement management functionality that is similar to a DOORS module. Imported
DOORS modules are linked into TTM as read-only modules. Changes to the requirements must be
made within DOORS and then synchronized within TTM. Additional requirements can be created
directly in TTM if they are not contained within DOORS or if the source requirements are not in a
requirement management system such as DOORS. The process to link a requirement to the model
is the same.

Figure 9. Requirement Links From Model to Test Vectors

DOORS Test Vectors

TTM

1

2

3

2. Terminology, Concepts, and Context

18

Figure 10. Linking Requirements to Table

2.5.2.3 Model Includes

TTM models support the inclusion of existing models of other requirements, interfaces, or functional
behavior. As a result, this feature helps consolidate behavior common to multiple models into a
single model and includes it in other models where needed. This feature also supports partitioning a
model to allow multiple engineers to work on it in parallel. Section 14.4 discusses key guidelines.

19

3. MODEL-BASED TESTING OVERVIEW

This section describes the typical scenario for using TAF to support requirement-based modeling
and automatic test generation. Any member of a team can develop models using requirement and
interface information that is available and pertinent to that component of the system.

3.1 TRADITIONAL VERIFICATION AND VALIDATION

The traditional Validation and Verification (V&V) process often is discussed in terms of the V-model
shown in Figure 11. There are various definitions for V&V, but [Boehm 1984] defined a simple
working definition, where Validation is “building the right system,” and Verification is “building the
system right.” Verification focuses on ensuring that the implementation satisfies the requirements. It
is important to do early requirements validation to ensure that the system meets the user’s needs
and the stated requirements are correct, complete, and consistent. However, often the customer
requirements are stated at such a high level that it is the responsibility of the system developer to
work with the customer to decompose the high-level requirements into lower-level, more concrete,
and testable requirements and design specifications. For example, “The system must be designed
for fail-safe operation” is a nonfunctional requirement that manifests in many implementation-derived
functional requirements. The developer must verify this requirement because it is allocated to
components of the entire system that must implement the fail-safe design (e.g., redundant
computers). In complex systems, this can be challenging.

Figure 11. Typical V-Model

At any level of a system, sets of components represent the target system that must be represented
in an architecture that characterizes its operational environment. For example, many of SSCI’s
members are suppliers to the Joint Strike Fighter program. The prime contractor specifies the overall
avionics architecture, possibly in collaboration with the subcontractor (partners), and this architecture

3. Model-Based Testing Overview

20

provides formalized interfaces for other components (e.g., radar, altimeters, guidance, electrical
power, engines, and weapons). The architecture that defines the interfaces of these components
defines the context for the component under development. Therefore, in terms of the interfaces
specified at the high level, requirements allocated to the components must be specified in terms of
the interfaces. Those requirements are analyzed, prioritized, and decomposed, and then tests are
defined in terms of those allocated requirements.

The design decisions manifest in a lower-level set of components, and this process can be repeated
recursively for each lower-level component as reflected in Figure 12. The initial customer
requirements can be specified in any form from customer scenarios, use case, or safety cases, and
they should be considered at the system level and traced down through the various levels of system
refinement. Although Figure 12 shows decomposition into software levels, the system decomposition
includes hardware too.

Figure 12. Hierarchical System Levels

3.2 TYPES OF TESTING

These hierarchical system levels support different levels of verification, validation, and testing. As
discussed in Section 2.2, the component of a system can be a low-level software unit that is unit
tested, a higher-level piece of software that is integration tested, or a packaged system that is
system tested. There are often different types of testing performed by different people within the
organization and by other stakeholders. Unit testing often is performed by the designer/implementer.
Developers and test engineers often perform integration testing, and test engineers, certification
organizations, and customers may do system testing. However, the same basic TAF process is
applied to the development of a model to support testing for these different types and levels of
testing as reflected in Figure 13.

Requirements

ImplementationImplementation Unit
Testing
Unit

Testing

Integration
Testing

Integration
Testing

System
Testing

System
Testing

Design
Specification

Design
Specification

Requirements
Specification

Requirements
Specification

Design

Implementation

Requirements

ImplementationImplementation Unit
Testing
Unit

Testing

Integration
Testing

Integration
Testing

System
Testing

System
Testing

Design
Specification

Design
Specification

Requirements
Specification

Requirements
Specification

Design

Implementation

Requirements

ImplementationImplementation Unit
Testing
Unit

Testing

Integration
Testing

Integration
Testing

System
Testing

System
Testing

Design
Specification

Design
Specification

Requirements
Specification

Requirements
Specification

Design

Implementation

Requirements

ImplementationImplementation Unit
Testing
Unit

Testing

Integration
Testing

Integration
Testing

System
Testing

System
Testing

Design
Specification

Design
Specification

Requirements
Specification

Requirements
Specification

Design

Implementation

Requirements

ImplementationImplementation Unit
Testing
Unit

Testing

Integration
Testing

Integration
Testing

System
Testing

System
Testing

Design
Specification

Design
Specification

Requirements
Specification

Requirements
Specification

Design

Implementation

Requirements

ImplementationImplementation Unit
Testing
Unit

Testing

Integration
Testing

Integration
Testing

System
Testing

System
Testing

Design
Specification

Design
Specification

Requirements
Specification

Requirements
Specification

Design

Implementation

Requirements

ImplementationImplementation Unit
Testing
Unit

Testing

Integration
Testing

Integration
Testing

System
Testing

System
Testing

Design
Specification

Design
Specification

Requirements
Specification

Requirements
Specification

Design

Implementation

Requirements

ImplementationImplementation Unit
Testing
Unit

Testing

Integration
Testing

Integration
Testing

System
Testing

System
Testing

Design
Specification

Design
Specification

Requirements
Specification

Requirements
Specification

Design

Implementation

System-Level
Models

Software-Level
Models

. . .

. . .

Refinement and Elaboration
Based on Implementation-Derived

Requirements

Validation Focus

Verification Focus

Customer Scenarios

. . . : Class1 : User : Class2

Clears

Set ()

 : Class4 : Partition 1

DisplayOff

sendMode

 : Class1 : User : Class2

Clears

Set ()

 : Class4 : Partition 1

DisplayOff

sendMode

Customer Scenarios

. . . : Class1 : User : Class2

Clears

Set ()

 : Class4 : Partition 1

DisplayOff

sendMode

 : Class1 : User : Class2

Clears

Set ()

 : Class4 : Partition 1

DisplayOff

sendMode

Safety Cases

. . .
Basic
Event

4

Top Event
(accident)

Intermediate
Event A

AND

Intermediate
Event B

Basic
Event

1

Basic
Event

2

Basic
Event

3

Basic
Event

5

Basic
Event

4

Top Event
(accident)

Intermediate
Event A

AND

Intermediate
Event B

Basic
Event

1

Basic
Event

2

Basic
Event

3

Basic
Event

5

Basic
Event

4

Top Event
(accident)

Intermediate
Event A

AND

Intermediate
Event B

Basic
Event

1

Basic
Event

2

Basic
Event

3

Basic
Event

5

Basic
Event

4

Top Event
(accident)

Intermediate
Event A

AND

Intermediate
Event B

Basic
Event

1

Basic
Event

2

Basic
Event

3

Basic
Event

5

3. Model-Based Testing Overview

21

Figure 13. Application by Roles

3.3 PROCESS DETAILS

An engineer develops a model for a component’s requirements and interfaces and generates tests
from it. The test cases are then transformed by the test driver generator into test scripts (aka test
drivers) for automated test execution. Test engineers work in parallel with requirement and design
engineers to refine the requirements and model them to support automated test design and test
execution. The following list outlines the process, as depicted in Figure 14:

1. Working from whatever requirements artifacts are available, testers or modelers create
models using the TTM tool based on the SCR method. Tables in the model represent each
output, specifying the relationship between input values and resulting output values. The
tools check the models for inconsistencies. The modeler interacts with the requirements
engineers to validate that the model is a complete and correct interpretation of the
requirements.

2. The tester maps the variables (inputs and outputs) of the model to the interfaces of the
system in object mappings. The nature of these interfaces depends on the level of testing
performed. See Section 3.4.3 for additional details.

3. The T-VEC tool generates test vectors for testing each (alternative) path in the model. These
test vectors include test inputs and expected test outputs, as well as model-to-test
traceability.

4. T-VEC generates the test drivers using the object mappings and schema. A schema is
created once for each test environment. The schema defines the algorithmic pattern to carry
out the execution of the test cases. The test driver executes in the target, host, or simulation
environment. The test drivers typically are designed as an automated test script that sets up
the test inputs enumerated in each test vector, invokes the element under test, and captures
the results.

5. T-VEC analyzes the test results by comparing the actual test results to the expected results.
T- then highlighting any discrepancies in a summary report.

Consortium members have applied this conceptual process in modeling many different types of
applications. This is the basic approach that underlies all the case studies discussed in this report.

Requirement
Analysi
s SR

S

Software

Implementation

Unit
Test

SW Integration
Tes
t

Syste
m Tes

t

Operational Requirements (User Level)

Refined Requirements Derived From Design and Architecture

Role That
Typicall
y Performs Test

Designer/Implementer Developer or
Test Engineer

Test Engineer/
Certification

3. Model-Based Testing Overview

22

Figure 14. Model-Based Test Automation

3.4 GENERAL GUIDELINES FOR DEVELOPING A MODEL

This section provides some general guidelines for developing requirement models. Figure 15 shows
a conceptual recursive process that is applied by the team of requirement, design, and modeling
engineers to a component at any level of a system. This process does not imply a waterfall modeling
approach. It is based on a process whereby implementation-derived requirements from higher-level
design decisions manifest themselves in an operational context for starting the modeling process at
a lower level (i.e., related to implementation-derived requirements). The recursive process steps are
driven by the modeling tasks. Once a version of the model is completed, even for a thread of the
component functionality, the testing can be performed at that level. This approach addresses
implementation-derived requirements allocated to components at various layers of the system
architecture and reduces the complexity of verification.

3. Model-Based Testing Overview

23

Figure 15. Recursive V-Model

The Help menu of the TTM tool provides details to perform the tasks in Sections 3.4.1 through 3.4.3.

3.4.1 DEFINE THE INTERFACES FOR THE MODEL

• Identify the interface boundaries of the component; the architecture at any level of the system
is the context for the component under test.

• Create new types and constants whenever they are needed in the course of the model
development.

• Identify the input (monitored) and output (controlled) variables:

− Identify modes and terms (See Appendix 0 for details).

• Define the variables:

− Define types for numeric variables so that the legal range of values can be specified.

− Define types for enumerated variables.

− Define Boolean variables (e.g., a flag) directly.

3.4.2 DEFINE BEHAVIORAL MODEL ELEMENTS

Use a goal-oriented approach, and work backward by identifying each output (controlled variable or
term) of the component:

• Create a table that assigns the value for each different computed value of the output.

• Use a condition table to describe relationships between outputs if the relationships are
continuous over time (i.e., invariant over time).

− Work backward, finding all of the conditions that must be TRUE for the function related to
the output to be relevant. See Conditions in Section 0.

• Identify interfaces
• Model requirements
• Check model for defects
• Map model variables to

interfaces (object mapping)
• Generate and execute tests
• Optionally check test

coverage

Unit
Test
Unit
Test

Specify
Architecture

Specify
Architecture

Specify
Requirements

Specify
Requirements

V&V
Analysis and

Reviews

V&V
Analysis and

Reviews

Implement
and Package
Implement

and Package

Specify
Design
Specify
Design

Integration
Test

Integration
Test

System
Test

System
Test

TAF
Support

3. Model-Based Testing Overview

24

• Use an event table (with mode or modeless) to describe relationships between an output (or
term) if the relationships are defined at a specific point in time.

− Define the events and optional guard conditions that trigger the event. See Events in
Section 0.

• Use a mode transition table (similar to a state machine) to describe relationships between an
object if the relationship for a mode is defined for a specific interval of time (set of related
system states):

− Identify the set of modes; define the event associated with each source-to-destination
transition.

If there are common conditions that are related to constraints (i.e., conditions or events) of functions
of two or more outputs (or terms), then define a term table that can be referenced in all relevant
tables.

3.4.3 MAP THE MODEL TO IMPLEMENTATION INTERFACES

The second aspect in the process to support test automation deals with mapping the model variables
to the corresponding implementation interfaces of the component to be tested. As shown in Figure
16, the verification model includes the following:

• TTM models that are defined through analysis and interpretation of the requirements; this
process is iterative, where tool analysis continues to help a modeler formalize details and
remove inconsistencies or contradictions within the model requirements.

• Object mappings that relate input and output variables to the interfaces of the designed or
implemented system. At the system level, the interfaces may include GUI widgets, database
APIs, or hardware interfaces. At the lowest level, they can include class interfaces or library
APIs. The tester uses these object mappings with a test driver pattern (aka schema) to
support automated test script generation. The tester works with the designers to ensure the
validity of the interface mappings from model to implementation.

• The test driver schema defines the test-environment-specific details for generating test
scripts, procedures, or test harness elements for initializing the target, injecting inputs,
executing the component under test, and extracting the output. NOTE: A test driver schema
needs to be defined only once for a test environment.

3. Model-Based Testing Overview

25

Figure 16. Verification Model Elements and Tool Relationships

3.5 TOOL PROCESS SUMMARY

As reflected in Figure 16 and Figure 17, test vectors are generated from the modeled information.
During the test generation process, model checking is performed automatically, and defects such as
logical contradictions are identified. The modeler must correct the problems in order to get a
complete set of tests for the model. Once the model is correct and the object mappings are
completed, test drivers are generated that can execute against the implementation. The expected
outputs are compared against the actual outputs, and a test results report is generated along with
project measurement information.

3. Model-Based Testing Overview

26

Figure 17. Tool-Supported Processes

3.6 SUMMARY

A constructive and layered approach to development and verification helps reduce the cost of
systematic verification. Layered verification allows the number of test cases to have a linear
relationship with the number of paths in the set of system components. Components can be
hierarchically related to support integration testing of a high-level subsystem without requiring tests
for each referenced lower-level component. This approach precludes the combinatorial explosion
associated with attempting to create tests from the combination of constraints associated with each
path through a hierarchy of components. This process also helps guide the design of components
that are easier to test because it promotes the development of interfaces at each level of the system,
which provides a more testable design. The TAF model-based testing approach has been applied by
Consortium members to many different levels of systems. The case studies in Sections 4 through 14
cover the spectrum of applications in which TAF has been applied using the general approach
covered in this section.

1: Capture, Model, and Manage
Requirements from textual or
undocumented requirements and
create links to associated
documents.

2: Analyze Requirements for Defects
using automated analyses to locate
model defects, such as logical
inconsistencies or contradictions, which
cannot be found effectively through
manual inspections.

3: Generate Test Vectors to
automate test case design, which
determines inputs and expected
outputs for each required function.
Automation virtually eliminates
this manual and error-prone
activity.

4: Generate Test Drivers to
produce bug-free drivers at a fraction
of the cost and time for any language
and test environment.

All phases:
Generate Project
Measurement and Status
Reports to track requirement
modeling, requirement defect
analyses, test generation
completeness, and overall test
completion status.

27

4. MARS POLAR LANDER

4.1 PROBLEM

The MPL project started February 1994. The MPL was lost on December 3, 1999, after 11
months in space, having traveled at least 35 million miles, with a cost of approximately $165
million; it was only 40 meters from landing. Because of a bug, the Touchdown Monitor (TDM)
software falsely indicated landing, causing a premature engine shutdown and subsequent MPL
crash. The verification activities were comprehensive and performed by dedicated, experienced
engineers. According to Bob Knickerbocker (Director of Software at Lockheed Martin Space
Systems Company Astronautics Operations), Lockheed Martin had serendipitously found the
bug a couple months after the crash.

It is believed that the engine shutdown occurred because of a failure to properly process an
electrical transient when the three landing legs were extended into their deployed position. This
event created an incorrect touchdown indication from the legs, causing the software to
inadvertently shutdown the descent engines prior to reaching the surface of Mars. The TDM
should have ignored this spurious indication, but because of a design flaw, the state of the leg
sensor signals was “latched” in the TDM computer memory, thus causing the premature engine
shutdown.

Lockheed Martin was responsible for the development and verification of the MPL spacecraft
and on-board software. The Lockheed Martin team was knowledgeable about the TAF
capabilities through use by other Lockheed Martin companies [Safford 2000]. They wanted to
know whether the use of TAF would have found the fault. Lockheed Martin sent the
requirements and the code to the SSCI TAF team but did not disclose the source or location of
the problem. At that time, the TAF team was not aware of the details of the TDM problem.

4.2 APPROACH

The TAF team deliberately did not look at the code before creating the tests. Rather, they
created a model, derived form the English-language requirements, using the SCR tool
developed by the Naval Research Laboratory. Figure 18 shows the conceptual process flow that
relates the artifacts to the tools. The TDM specification is modeled using the SCR tool from the
single page of textual MPL touchdown landing requirements shown in Figure 20, without
knowledge of the code failure, and with no other information and support from Lockheed Martin.
TAF translates the SCR model to a T-VEC test specification. T-VEC automatically generates
test vectors (i.e., test cases with test input values, expected output values, and traceability
information) and requirement-to-test coverage metrics. T-VEC automatically generates test
drivers to execute tests against the TDM code compiled in a Microsoft C++ development

4. Mars Polar Lander

28

environment running on a Windows NT platform. The execution of the test driver results in
actual outputs that are then compared with the expected outputs, and the results report is
produced.

Figure 18. Process Flow and Artifacts

4.3 IMPLEMENTATION

4.3.1 INTENDED BEHAVIOR

The software requirements are paraphrased as follows (see actual requirements in Figure 20),
but Lockheed Martin provided some additional insights almost 2 years after discovery of the
fault. Figure 19 shows details relating to the failure scenario and the TDM component interfaces.

The TDM is a software component of the MPL system that monitors the state of three landing
legs during two stages of the descent. As shown in Figure 19, the interfaces to the TDM module
include a real-time, multitasking executive and leg sensors. The executive calls the TDM at a
rate of 100 times per second to read the sensor leg data for each of the three legs.

During the first stage, starting approximately 5 kilometers above the Mars surface, the TDM
software monitors the three touchdown legs. One sensor for each leg is used to determine
whether the leg touched down. When the legs lock into the deployed position, there was a
known possibility that the sensor might indicate a touchdown signal. The TDM software was
supposed to handle this potential event by marking a leg that generates a spurious signal on
two consecutive sensor-reads as having a “bad” sensor. During the second stage, 40 meters
above the Mars surface, the TDM software was supposed to monitor the remaining “good”
sensors. When a sensor had two consecutive reads indicating touchdown, the TDM software

4. Mars Polar Lander

29

was supposed to command the descent engine to shutdown. There is no absolute way to
confirm what happened to the MPL, but the following is believed to be the failure scenario.

Figure 19. Mars Polar Lander Details

The MPL was in the first stage of descent (5 kilometers). The engine was on.

1. The landing legs were deployed and locked into position.

2. During a clock tick, one of the legs (e.g., leg 1) showed an incorrect touchdown
indication. That touchdown indication was stored in a program variable. Call it sensor[1].

3. On the next clock tick, the value of sensor[1] was copied into last_sensor[1]. That
variable tells whether a touchdown indication was seen in the previous clock tick.

4. The same leg still showed a touchdown indication. That indication was stored in
sensor[1]. Because both sensor[1] and last_sensor[1] were set, further sampling from
leg 1 was turned off. However, the variables retained their values.

5. When the MPL entered the second stage of descent (40 meters), the processing of leg
touchdown indications changed, and the MPL should have turned off the engine when
the "sensor" and "last_sensor" variables for any leg (provided the leg had not been
marked bad) both indicated a touchdown event.

6. The failure occurred because sensor[1] and last_sensor[1] indicated a touchdown, so
the engine was erroneously turned off approximately 40 meters above the surface
instead of on touchdown.

There are many ways that the requirement could have been designed and implemented, but the
essence of the design flaw is that the program variables retained the state of the “bad” sensor
information.

Mars Surface

40 Meters
CMD_disable_enable = enable

TDM Module
Interfaces

Leg
Sensors

TDM
Module

Executive

CMD_disable_enable
TDM_started

Sensor Value
for Each of Three

Legs

TDM Module
Interfaces

Leg
Sensors

TDM
Module

Executive

CMD_disable_enable
TDM_started

Sensor Value
for Each of Three

Legs

5 KM
TDM_started = TRUE

Mars Lander Descent Path

TDM
Interfaces

First
Stage

Second
Stage

4. Mars Polar Lander

30

4.3.2 TDM REQUIREMENTS AND MODEL

Lockheed Martin supplied the textual requirements shown in Figure 20 to the TAF team.
Developing SCR models requires identifying the system input and output variables and defining
the relationships between them. Typically, this process is iterative. It involves defining the
variables, data types associated with the variables, and the tables that define relationships
between the variables. The value of each output is defined in terms of the system inputs. Term
variables are introduced whenever intermediate values are necessary or useful. Breaking the
TDM requirement into clauses supports identifying variables and relationships.

Figure 20. TDM Requirements (From Lockheed Martin)

The input variables identified in the system can be refined into the following set:

• TD_1, TD_2, TD_3. The current sensor value for landing legs 1, 2, and 3, respectively.

• TD_1_Last, TD_2_Last, TD_3_Last. The sensor value for landing legs 1, 2, and 3 from
the previous cycle.

• CMD_disable_enable. The state of the event generation flag; when enabled, the
touchdown signal can be issued.

• TDM_started. The global variable that allows the TDM executive to run.

4. Mars Polar Lander

31

Although the requirements document indicates that the output is “Touchdown time,” the key
output associated with the code interface is called “TDM_thruster,” which is modeled as an
enumerated data type that can take on the value of DISABLE, meaning that the thruster is shut
off, or ENABLE, meaning that the thruster is on.

4.3.3 EXAMPLE MODELS

Once the system’s interfaces are defined, its behavior is modeled in SCR using condition tables
and one mode table. These tables define the value of a variable in terms of input, terms
(intermediate), and mode (state) variables. A condition table defines the output value for
TDM_thruster. It depends on five condition tables and one mode table.

A mode table, TDM_Modes defines two modes, relating to descent stages. The mode
Before_event is the mode associated with the descent between 5 kilometers to 40 meters. The
mode Event_gen, related to the requirement referred to as “touchdown event generation,” is the
stage of descent that starts approximately 40 meters above the surface of Mars.

Three condition tables named TD_Sen_1, TD_Sen_2, and TD_Sen_3 define the conditions
associated with the sensor signal for each landing leg. The condition table First_Marked_Bad
models the requirement for detecting a failed sensor, where the first sensor with two
consecutive reads is marked bad. The term First_Marked_Bad also depends on TDM_Modes.
The condition table TDM_thruster relies on the output of the other tables to specify the behavior
for the value of the output TDM_thruster.

Two examples tables provide details of the model. The term First_Marked_Bad, shown in Figure
21, is modeled as an Integer that returns a value between 0 and 3. The table First_Marked_Bad
is also associated with the mode table TDM_Modes. The first column of the table contains the
value 0 to 3. The second column describes the conditions. The third column defines the mode,
which are the two possible modes for TDM_Modes. These mode values are combined with the
conditions as they specify the required value for the output First_Marked_Bad. When the mode
is Before_event the value of First_Marked_Bad must always be 0, as indicated by the TRUE
condition in the row associated with Before_event mode. When the mode is Event_gen, the
value of First_Marked_Bad takes on the value of 1, 2 or 3 depending on the condition
associated with the term for the sensors TD_Sen_1, TD_Sen_2, or TD_Sen_3; otherwise, it
takes on the value 0.

Figure 21. Behavioral Specification for First_Marked_Bad

Figure 22 shows the condition table for TDM_thruster. Like First_Marked_Bad, TDM_thruster
also is associated with the mode table TDM_Modes. When the mode is Before_event, the

4. Mars Polar Lander

32

thruster always must be ENABLE. After the Event_gen, the thruster takes on the value
DISABLE when TDM_started is equal to TDM_YES, with one of three possible conditions:

1. First_Marked_Bad = 1, indicating that sensor leg 1 has been marked bad, and then
sensor leg 2 (TD_Sen_2) or sensor leg 3 (TD_Sen_3) has become true.

2. First_Marked_Bad = 2, indicating that sensor leg 2 has been marked bad, and then
sensor leg 1 (TD_Sen_1) or sensor leg 3 (TD_Sen_3) has become true.

3. First_Marked_Bad = 3, indicating that sensor leg 3 has been marked bad, and then
sensor leg 1 (TD_Sen_1) or sensor leg 2 (TD_Sen_2) has become true.

Otherwise, if the mode is still Event_gen, then TDM_thruster must be ENABLE when:

1. First_Marked_Bad is 0 – indicating that no sensor has been activated.

2. First_Marked_Bad is 1, but neither sensor for leg 2 or 3 has been sensed.

3. First_Marked_Bad is 2, but neither sensor for leg 1 or 3 has been sensed.

4. First_Marked_Bad is 3, but neither sensor for leg 1 or 2 has been sensed.

Row 3 illustrates the specification of the situation that identified the bug. It represents the case
where one of the legs was marked bad, but no other sensor reads occurred. This approach
reflects the recommended practice of specifying the positive cases as well as the negative
cases.

Figure 22. Behavior Specification for TDM_thruster

4.3.4 TEST VECTOR GENERATION

The T-VEC tool converts a model into test vectors that exercise the conditions in the model,
special values of the variables (like boundary values for floating point variables), and special
combinations of values. Table 2 shows the 19 vectors derived from the model. TDM_thruster is
the output variable; it defines the expected output for the engine. CMD_disable_enable defines
whether the MPL can turn off the thruster upon appropriate signal from the legs; it is disabled
above 40 meters and enabled at or below 40 meters. TD_1 and TD_Last_1 show whether the
leg registered touchdown on the current and previous clock ticks. First_Marked_Bad shows
which leg was marked bad, if any; if none were marked bad, it contains 0. The tool also
combines redundant test vectors, like 3 and 5, to reduce the size of the test set.

4. Mars Polar Lander

33

Tests 17 through 22 are test vectors that expose the failure. In test 22, engine shutdown is
enabled. Legs 1 and 2 are not signaling touchdown. TD_3 and TD_Last_3 show that the leg has
signaled touchdown in two clock ticks. However, First_Marked_Bad shows that the leg sensor is
considered bad. So the expected result is to leave the engine enabled. As is known from the
failure scenario, the software will instead shut the engine down.

4.3.5 TEST DRIVER GENERATION AND EXECUTION

Executing the test requires creating a test driver. The test driver generator combines test
vectors and object mapping, which map the model variable to the implementation variables or
interfaces to produce test drivers. The test vector shows eight inputs, but only five of them are
true inputs to the software. TD_Last_1, TD_Last_2, and TD_Last_3 are not inputs. Rather, they
are ways of noting that the software, to meet its requirements, must store the previous values of
the inputs TD_1, TD_2, and TD_3. So, each test vector is executed in two steps. In the first, the
values of TD_Last_1, TD_Last_2, and TD_Last_3 are provided. In the second, the values of
TD_1, TD_2, and TD_3 (as well as CMD_disable_enable) are provided to represent the next
clock tick, and the actual output is checked against the expected output.

The test driver also uses a test driver schema, which encodes an algorithmic pattern for test
execution for the specific test environment. The test driver generator creates test drivers by
repeating the execution steps defined in the schema for each test vector. There are typically
four primary steps for executing each test case:

• Set the value of the test output to some value other than what is expected.

• Set the values of the test inputs.

• Cause execution of the test.

• Retrieve and save the results of the test execution.

Test driver schemas describe how to accomplish these steps for a specific testing environment
using a simple language that accesses information about the test vectors. A schema also
describes the form of expected outputs to support results analysis.

An existing C test driver schema was used to produce the test driver file TDM_thruster.c, which
is the main program for the test. TDM_thruster.c is compiled and linked with
sam_Touchdown_Monitor.c (the actual C module for the TDM software). The test driver
TDM_thruster.c performs some initialization, sets the inputs, calls the subsystem under test, and
stores the resulting output. The generated test drivers were executed programmatically on a
Windows NT platform. The test driver schema simulates the way the multitasking executive
called the TDM entry point. This approach for calling the subsystem under test is commonly
used with other TAF schemas to propagate state data. The test driver made two calls to the
main entry point. The execution of the test driver resulted in a failure that emulated the situation
where state data would propagate and latch into a particular state. The tests, shown in Table 2,
which uncovered the failure scenario, are associated with the modeled requirement
First_Marked_Bad, defined in Figure 21.

Table 2. Test Vectors for TDM_thruster

4. Mars Polar Lander

34

Test ID Expected Output Inputs

 TDM_thruster First_Marked_
Bad

CMD_disable_
enable TD_1 TD_Last_

1 TD_2 TD_Last_
2 TD_3 TD_Last_

3
1 ENABLE 3 DISABLE TRUE TRUE TRUE TRUE TRUE TRUE
2 ENABLE 0 DISABLE FALSE FALSE FALSE FALSE FALSE FALSE

3.5 DISABLE 1 ENABLE TRUE TRUE TRUE TRUE TRUE TRUE
4 DISABLE 1 ENABLE TRUE TRUE TRUE TRUE FALSE FALSE
6 DISABLE 1 ENABLE TRUE TRUE FALSE FALSE TRUE TRUE

7.9 DISABLE 2 ENABLE TRUE TRUE TRUE TRUE TRUE TRUE
8 DISABLE 2 ENABLE TRUE TRUE TRUE TRUE FALSE FALSE

10 DISABLE 2 ENABLE FALSE FALSE TRUE TRUE TRUE TRUE
11.13 DISABLE 3 ENABLE TRUE TRUE TRUE TRUE TRUE TRUE

12 DISABLE 3 ENABLE TRUE TRUE FALSE FALSE TRUE TRUE
14 DISABLE 3 ENABLE FALSE FALSE TRUE TRUE TRUE TRUE
15 ENABLE 0 ENABLE FALSE TRUE FALSE TRUE FALSE TRUE
16 ENABLE 0 ENABLE FALSE FALSE FALSE FALSE FALSE FALSE
17 ENABLE 1 ENALBE TRUE TRUE FALSE TRUE FALSE TRUE
18 ENABLE 1 ENABLE TRUE TRUE FALSE FALSE FALSE FALSE
19 ENABLE 2 ENABLE FALSE TRUE TRUE TRUE FALSE TRUE
20 ENABLE 2 ENABLE FALSE FALSE TRUE TRUE FALSE FALSE
21 ENABLE 3 ENABLE FALSE TRUE FALSE TRUE TRUE TRUE
22 ENABLE 3 ENABLE FALSE FALSE FALSE FALSE TRUE TRUE

4.4 KEY GUIDELINES

4.4.1 USE GOAL-ORIENTED MODELING, WORKING BACKWARD FROM OUTPUTS

This case study reflects the recommended process for using the TAF as discussed in Section
3.3. The modeling process is goal-oriented, working backward from the output (TDM_Thruster).
The process starts from TDM_Thruster and describes the conditions associated with each value
that it can take on. Common conditions such as First_Marked_Bad are defined in a separate
table and referenced several times.

4.4.2 CHARACTERIZE CRITICAL BEHAVIOR IN MODELS

This case study illustrates an important point: models do not have to characterize every possible
combination of behavior to be effective in identifying faults. For example, the model does not
have a situation where two legs are marked bad prior to the event generation event. However, it
is common for the number of tests generated from a model to significantly exceed the number of
test cases created manually.

4.4.3 MODEL BOTH POSITIVE AND NEGATIVE CASES

It is necessary to specify the required functional behavior, and most manual test cases cover
the common or positive case. However, sometimes testers forget to specify the negative case
such as that illustrated in Row 3 of Figure 22. In this case, a sensor leg is marked bad, but
where there were no sensor indications on the other legs that were not bad. This part of the
model produced the tests that identified a bug in the implementation of the TDM. These types of
cases often can identify unhandled situations in the code implementation.

4. Mars Polar Lander

35

4.4.4 ENSURE THAT TEST DRIVER PROPAGATES STATE DATA

When testing components with state data, the test driver must make two or more calls to the
component under test to cause the input data to propagate through the state or historical data of
the implemented system so that it is observable as an output. The test driver schema is the
place where this type of pattern is implemented once but can be applied for all tests related to
the test environment. The following algorithm illustrates this point given the assumption that the
state information is only one level deep like the TDM (i.e., the monitor observes two reads on
any one sensor: the current value and the previous value).

1 Loop through all test cases
2 Initialize the test environment
3 Set the output to a value other than expected
4 Set the inputs
5 Call the system under test (to set the historical state data)
6 Set the inputs
7 Call the system under test
8 Get the output
9 End loop

Line 5 is the critical addition to this pattern. It causes the inputs to be propagated into the state
or historical data; the second time the subsystem is executed, the state data combined with the
input data are used to compute the output. In the case of the TDM, this resulted in a failure. The
state history in the TDM application is only one-deep because the software monitored two
consecutive reads of the leg sensor data. If the state information has more states (e.g., current
data, previous data, and second previous data), then the propagation would require additional
calls or processing like Line 5 in the algorithm.

4.5 RESULTS

In fewer than 12 hours, the TAF model-based testing approach identified the code bug that was
the probable cause of failure, without the support of Lockheed Martin. Lockheed Martin's Bob
Knickerbocker stated that T-VEC's systematic approach, supported by the tools, provides a
standardized test approach and a more thorough test capability than the manual approach. The
test driver generation mechanism provides the flexibility to simulate the real-time environment of
the TDM code module. These results suggest that TAF provides more standardized and
thorough testing for verification of critical software and system functionality. TAF provides the
capabilities to identify critical software and system defects to significantly minimize the risk
where one bug can be catastrophic as in the case of the MPL failure.

The results of the application suggest that the TAF approach has the potential to provide a
systematic and cost-effective approach for verification. Lockheed Martin believes the tool
provides a standardized test approach and a more thorough test capability than the manual
approach. Lockheed Martin has used TAF on other projects [Boden 2004].

4. Mars Polar Lander

36

This page intentionally left blank.

37

5. PRINTER FEATURE PROCESSING

5.1 PROBLEM

The application for this case study is based on testing the software that implements the XPIF.
The XPIF is a mapping of the common print semantics specification into eXtensible Markup
Language (XML). The specific project focuses on a reduced set of XPIF that complies with the
syntactical structures defined in the IPP5. XPIF is processed by component applications that
control the way documents should be printed and processed. There are a large number of
combinations to test, but there are different variations that must be supported by different types
of printers. In addition, the specification features continue to expand, requiring significant
maintenance to the test and significant regression testing. This is expensive to do manually and
often creates only subsets of the tests.

5.2 APPROACH

Figure 23 illustrates the conceptual environment and interfaces of the XPIF processing. Like
many SSCI members, this member has a printer engine test execution tool that can automate
the test execution. It also provides a pseudo-target environment to load and execute different
versions of the software because the actual printer hardware and software were being
developed concurrent with this application of TAF.

Figure 23. XPIF Test Execution Environment

The objective is to produce different combinations of XPIF printer specifications that test the
various combinations of operation and job-template attributes. An XPIF document is input to the

5 http://ietf.org/rfc/rfc2566.txt

5. Printer Feature Processing

38

printer engine test execution tool in XML format. The component under test parses the XPIF
document, and attributes parsed from the XPIF are stored in a database (referred to as the Data
Store). Other functions produce the actual documents read from the Data Store to produce the
document. The test execution tool can access one or more XPIF files, submit them for
processing, suspend the processing temporarily while it retrieves the desired attributes from the
Data Store, and then write those attribute names and values to an actual output file.

To automate testing fully, it is critical to understand the interfaces of the component as well as
the test environment prior to modeling because these interfaces are the model inputs and
outputs. In addition, the input and output representations must be known in order to define the
object mappings because it is critical that these inputs are programmatically “settable” and the
outputs are programmatically “gettable” to support full test automation without manual
intervention.

5.3 IMPLEMENTATION

Figure 24 provides a perspective of the process used to model and generate test scripts for
testing the XPIF parsing function. The primary input to the modeling process is the XPIF
specification document and an XML Document Type Declaration (DTD)
[http://www.w3.org/TR/REC-xml/] definition that provides details for the various attributes that
should be modeled, and their representation produces an XML file.

Figure 24. XPIF Modeling Scenario

An XPIF document has several components:

• Xml version

• Document Type

5. Printer Feature Processing

39

• Xpif version and section that contains:

− xpif-operation-attributes section with many possible attributes

− job-template-attributes section with many possible attributes

Some example attributes specified by XPIF include job-priority, multiple-document-handling,
copies, page-ranges, orientation-requested, print-quality. The following is an example of the
XML specifying some XPIF attributes:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE xpif SYSTEM "xpif-v02012.dtd">
<xpif cpss-version="2.01" version="1.0" xml:lang="en">
 <xpif-operation-attributes>
 <job-name syntax="name" xml:lang="en"
 xml:space="preserve">tiger.ps</job-name>
 <requesting-user-name syntax="name"
 xml:space="preserve">ydufresn</requesting-user-name>
 </xpif-operation-attributes>
 <job-template-attributes>
 <copies syntax="integer">2</copies>
 <finishings syntax="1setOf">
 <value syntax="enum">3</value>
 </finishings>
 <job-recipient-name syntax="name"
 xml:space="preserve">cmiyachi</job-recipient-name>
 <media-col syntax="collection">
 <media-type syntax="keyword">stationery</media-type>
 <media-hole-count syntax="integer">0</media-hole-count>
 <media-color syntax="keyword">white</media-color>
 <media-size syntax="collection">
 <x-dimension syntax="integer">21600</x-dimension>
 <y-dimension syntax="integer">27900</y-dimension>
 </media-size>
 </media-col>
 <sheet-collate syntax="keyword">collated</sheet-collate>
 <sides syntax="keyword">one-sided</sides>
 </job-template-attributes>
</xpif>

The processed XPIF attributes have related attributes in the Data Store. The expected outputs
are compared against the attribute values in the Data Store to ensure that each combination is
processed properly. This approach provides a useful environment and more efficient process for
testing because it is manually intensive to visually inspect each produced document for each
test case to ensure that the proper processing is performed.

The TTM model for the XPIF function was translated, and test vectors were generated. The test
vectors, combined with the object mappings and test driver schema, were input to the test driver
generator to produce a set of XML files covering the various combinations of XPIF functions,
one for each test case. The test driver produced expected outputs associated with the
processed attributes stored in the Data Store for each corresponding XPIF file.

5. Printer Feature Processing

40

The test comparison and test results report generation checks that each attribute value in the
actual test output file has the proper value as specified by the expected output file. In this case,
each test vector was required to map to one XPIF file. There were many test vectors, resulting
in many XPIF files. There was one actual output file and one expected output for each XPIF file.
A Test Comparison program was tailored from a template in the TAF toolkit, which is written in
Perl. It compared the results of each actual output file with those of the expected output file and
generated a HyperText Markup Language (HTML) report where each output attribute value that
did not compare with the expected output attribute value was highlighted in red as shown in
Figure 25. The modeling and testing were performed simultaneously to the XPIF parser
development. Test cases uncovered several XPIF attributes that were not completely
implemented, as well as other defects in the program.

Figure 25. Test Results Report Generation

5.4 KEY GUIDELINES

5.4.1 UNDERSTAND THE INTERFACES AND TEST ENVIRONMENT

Understand the interfaces and test environment before starting to model because the model
inputs must be associated with the programmably settable inputs and the programmably
gettable outputs within the test environment. In this case, the inputs were XML files with many
attributes, one for each test case. The outputs were attributes that were parsed from the XML
inputs and extracted by the test tool from the Data Store and saved in a file.

5.4.2 SELECT A FEATURE THAT WILL CHANGE

It is best to select a feature that will likely continue to change because this provides the most
leverage when using and demonstrating TAF. Use the TAF team to help develop models and
test driver support for actual product testing, or identify another application and related feature
that also might be considered for a project deployment. After the pilot project, the test
infrastructure should be stable and reusable for other projects.

Test Comparison
Program

(Perl)

. . .

Expected
Outputs

. . .

Expected
Outputs

. . .

Actual
Outputs

. . .

Actual
Outputs

Consolidated Test Results Report

5. Printer Feature Processing

41

The first follow-on project should consider other small projects or system threads where TAF
could be used to support the interface-driven approach; this seems to be a critical way to help
foster better component architectures that have support for testability.

5.4.3 ASK THE TAF TEAM FOR ADVICE

The TAF capabilities have continued to evolve over the last decade, but sometimes the specific
test environment may require special processing. Remember to ask the TAF team for help or
advice because they are likely to have something in the toolkit that can help speed the
deployment process. The following list provides two examples:

• The TAF/T-VEC tools provide a test results comparison and report generation
capabilities, but for this application, each test case was represented by one file that
contained many attributes that were compared. The TAF team has a toolkit with various
utilities. The team was able to quickly tailor an existing cross-comparison and test report
generator written in Perl for this application.

• Typically, a test tool usually has primitive networking capabilities. The TAF team needed
to build a small file transfer mechanism for downloading the XML test files and uploading
the actual output files. Again, the team used a small Perl program from the toolkit to
automate the file transfer using File Transfer Protocol (FTP).

5.5 RESULTS

The key highlights include:

• Example application modeling, test vector generation, test driver generation, and fully
automated test execution and results analysis were conducted in 1.5 days.

• A subset of the model specification included 20 input attributes, 40 requirements, with a
total of 80 test vectors associated with 1,040 test cases, with 380 test failures.

• TAF-generated tests were more comprehensive and systematic than manually
developed tests in producing tests cases because they uncovered errors not known by
the developer.

• TAF was demonstrated to apply to XPIF, where models developed in a Windows
environment can generate XML tests files processed through a member’s test tool that is
integrated with an existing test execution tool.

• Members noted that if TAF approach is applied during development, it would likely lead
to better development of error handling and error messaging, as well as improved API
interfaces.

• The product types are applicable for applying TAF, and there is a strong desire to do a
better job of architecting products based on reusable components. The best-practice
approach for applying TAF, based on interface-driven, model-based testing, would help
in developing better component interfaces.

5. Printer Feature Processing

42

• The continuous verification approach supported by the TAF helps identify requirement
defects earlier to reduce rework. The rework associated with requirement defects is a
costly problem with this and most SSCI members. Continuous verification helps shorten
cycle time by performing much of the testing in parallel with development.

• TAF provides requirement-to-test traceability, and this was currently lacking with this
member’s testing process.

One of the final points noted by the member company team during the review of this pilot
application was that the use of TAF would be valuable in fostering the design of better system
interfaces if it were used in parallel with development like it was on this pilot. The management
and project leads noted that the lack of specific requirements often gives the developer too
much latitude, and they create too many features that are not needed with the application.
These additional features often delay the release schedule and also contribute to reduced
quality because of feature interaction problems.

43

6. SQL EXTENSION LANGUAGE PROCESSING

6.1 PROBLEM

This member company builds a parallel database management system (DBMS) that processes
various languages and command sets that go beyond the standard SQL
[http://www.itl.nist.gov/fipspubs/fip127-2.htm]. The TAF team worked with the member on
several custom language processing examples. Testing these applications is time-consuming
because it is manually intensive to produce test cases and test scripts to cover all the
combinations of the various types of languages and command sets that are continually evolving.
In addition, the effort and cost increase because these tests must be evolved or regression
tested for each new release of the system. This case study covers an application that processes
an extension to a standard SQL command called CREATE TYPE.

6.2 APPROACH

The TAF team developed a model from the language grammar for the CREATE TYPE function,
which is one of the User Defined Types function to illustrate how TAF can systematically
produce tests to cover each combination of the function and related options. The CREATE
TYPE statement defines a user-defined structured type that includes zero or more attributes.
Following is an example of a CREATE TYPE statement:

 CREATE TYPE address_t AS
 (STREET VARCHAR(30),
 NUMBER CHAR(15),
 CITY VARCHAR(30),
 STATE VARCHAR(10))
 NOT FINAL
 MODE DB2SQL
 METHOD SAMEZIP (addr address_t)
 RETURNS INTEGER
 LANGUAGE SQL
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION

 METHOD DISTANCE (address_t)
 RETURNS FLOAT
 LANGUAGE C
 DETERMINISTIC
 PARAMETER STYLE DB2SQL
 NO SQL
 NO EXTERNAL ACTION;

6. SQL Extension Language Processing

44

The objective is to model the language syntax and generate CREATE TYPE commands that
cover all parameter combinations. There are different notations, both textual and graphic, to
specify the syntax of a command. The Backus-Naur Form (BNF)
[http://en.wikipedia.org/wiki/Backus-Naur_form] is a common notation used to represent
language syntax. Following is some of the language syntax for the “<structured type create>”
language:

<structured type create> ::=
CREATE TYPE <structured type name>
[<subtype clause>]
[AS <member list>]
[<instantiable clause>]
NOT FINAL
[{ <encryption> | <compress> }]
[<structured type method specification list>]

<structured type name> ::= [<database name> <period>] <identifier>

<subtype clause> ::= UNDER <supertype name>

<supertype name> ::= <structured type name>

<member list> ::=
<left paren>
<attribute definition> [{ <comma> <attribute definition> }...]
<right paren>

. . . MORE

In BNF nonterminal symbols, such as <structured type create>, are further decomposed.
Everything after the “::=” is part of their definition. The “|” symbol means “or.”

6.3 IMPLEMENTATION

The model closely parallels the structure of the BNF grammar and covers each language option
required for the test cases. There is a simple pattern for modeling language syntax defined in
BNF or other related syntax language descriptions. See Section 11.4 for more details and
specific guidelines. The test driver produces a sequence of SQL commands covering each of
the different cases that must be processed by the target application. The SQL language
statements are output to a test script language that is used to inject the SQL commands into the
target test environment. The script language has special directives to initialize the different
database environment for different types of processing scenarios as shown in Figure 26.

6. SQL Extension Language Processing

45

Figure 26. SQL Extension Test Environment

6.4 KEY GUIDELINES

There is a general pattern for modeling a language grammar using SCR condition tables within
TTM. The generated tests provide a mechanism for testing command line functions with various
parameters and options, language commands and data structures.

The syntax for the structured_type_create grammar has one fixed part of the function
(structured_type_name) and six optional parts (e.g., subtype_clause, and as_member_list). The
brackets identify parts that are optional in the following higher-level representation of the BNF
syntax for structured_type_create.

<structured_type_create> ::= <structured_type_name>
 [<subtype_clause>]
 [<as_member_list>]
 [<instantiable_clause>]
 [<instantiable_clause>]
 [<encryption_compression>]
 [<structured_type_method_specification_list>]

Figure 27 shows the model representation for structured_type_create. It is modeled as a
Boolean type because the outputs are simply the representation of the function command parts.
Each nonterminal symbol of the grammar is modeled as a Term condition table, and an “ns_” is
prefixed on the name to indicate that it is a nonterminal symbol. A non-terminal symbol is used
when the language for that option has several elements. The approach used to specify that a
symbol is optional is illustrated with the subtype_clause:

 (nt_subtype_clause

Test
Results

Verification Model

Test Vector
Generator

Test Driver
Generator

Expected Outputs

Actual
Outputs

Cross-
Comparison

SQL commands
Interfaces

SQL commands
Interfaces

Object
Mapping

Test
Driver

Schema

Database
System

Behavior

BTEQ
Test Engine

BNF Grammar

6. SQL Extension Language Processing

46

 OR NOT(nt_subtype_clause))

This forces one vector to include the subtype clause when it is TRUE and when its value is
FALSE that part of the clause is blank. This pattern is used for all of the optional components of
the structured_type_create syntax.

Figure 27. Model Representation of structured_type_create

6.5 RESULTS

A model and associated test driver schema produced 9,600 variations of the CREATE TYPE
function, providing complete coverage of all function combinations. The traditional manual
testing often would not attempt to cover all combinations. Following is an example of a few of
the generated SQL language statements:

CREATE TYPE db9.type9 UNDER db8.type8 AS (attr_def_list) NOT FINAL ;

CREATE TYPE db1.type1 UNDER db2.type2 NOT FINAL ENCRYPTION INSTANCE
METHOD method_name (params) RETURNS data_type LANGUAGE C;

CREATE TYPE db1.type1 UNDER db2.type2 NOT FINAL ENCRYPTION OVERRIDING
CONSTRUCTOR METHOD method_name (params) RETURNS data_type ;

CREATE TYPE db9.type9 UNDER db8.type8 NOT FINAL ENCRYPTION ;

CREATE TYPE db9.type9 UNDER db8.type8 NOT FINAL ;

The TAF team also worked on some other functions, such as the CREATE TABLE function for
the Partitioned Primary Index that used a similar pattern as shown in Figure 26. The team was
able to use the same test driver schema to produce test scripts for the test environment.

There is a simple pattern to systematically model command line functions and language
commands that often expand quickly into thousands of test cases. Manual testing often does
not cover all these combinations. In addition, with the evolution required to support various other

Nonterminals
Modeled as

Terms

6. SQL Extension Language Processing

47

languages and environments, it is easier to modify the models and regenerate all the tests
rather than to do the manual analysis and manual retesting of those features that have been
impacted. In addition, once a modeler develops a common test driver schema for the target test
environment, it can be reused as was done with the test script schema by this member.

The member also thought that the TAF approach captures feature-level requirements in addition
to supporting automated test generation. The TAF model-based approach improves also on the
typical script testing approach, where the requirements must be “internalized” by the test
engineer (or developer in many cases) and then represented as a test script that is manually
coded. TAF models separate the feature requirements (and logic) from the details of the test-
scripting environment, which is generated automatically to carry out the tests. This provides
requirement models that result in tests that cover application requirement threads more
thoroughly than the traditional manual approach. This separates the test environment details
from the model logic and should allow this member to evolve to a more advanced test
environment, such as Java Database Connectivity (JDBC)6 or Open Database Connectivity
(ODBC), with automated results validation, which support SQL command execution. See more
about the JDBC testing environment support for SQL and databases in Section 12.

6 JDBC is a Java version supporting ODBC, a standard database access method developed by
Microsoft Corporation.

6. SQL Extension Language Processing

48

This page intentionally left blank

49

7. CLIENT-SERVER WEB APPLICATION

7.1 PROBLEM

This member company builds many customer applications, some residing on older mainframes
that use the IBM-style Customer Information Control System (CISC) through terminal emulation
and some new client-server applications that interface with a database server through a web
client. Most applications have little or no documented requirements to support the testing. In
some small number of cases, user guides or help information may exist. The discovery of the
requirements is left to the tester or a few experts. The company began investigating the use of
Capture/Replay tools such as WinRunner to move toward more test automation. Although these
tools do help in test automation, unlike model-based tools, they do not capture the
requirements; rather they capture the sequence of keyboard and mouse operations that are
required with a test scenario.

Many of this company’s applications rely on a database too. To support testing, a database has
to be populated with test data that can permit the execution of different test scenarios. Such a
database is often referred to as the “gold” database. However, populating this type of database
can be time-consuming, requires detailed understanding of the requirements, and usually is
performed most quickly using some form of scripting or Job Control Language (JCL) in the case
of this particular member application. For more details on how to address this problem see
Section 12, which discusses model-driven dynamic test data generation for a database.

The TAF team worked with this member to develop a few different types of requirement models
and test drivers that executed through a DynaComm CICS terminal emulation. The member
wanted to build a model that could execute through a web-based client. The specific application
discussed in this section is called the Strategic Problem Solving (SPS) system that was created
through the WinRunner WebTest Capture/Play tool. The team selected this application because
it is web-based and has WinRunner test scripts that provide the basis for understanding the
requirements and previous test cases. The company also wanted to compare the TAF approach
for generating tests from models to the tests manually created through WinRunner.

7.2 APPROACH

The TAF team worked with the company’s lead test engineer to reverse engineer the
requirements from existing WinRunner test scripts for the SPS application, which had a few test
execution problems. The team also talked to two senior developers who understood the
functionality of the SPS application and worked with staff to develop a model for a thread of
requirements to demonstrate the feasibility. The modeled use case performed the Login to the

7. Client-Server Web Application

50

SPS system and then performed the Add Project function, which includes the following
subfunctions to collect:

• General information about a problem

• Categories of the problem

• A free-text summary of the problem

• Participants involved in supporting and correcting the problem

The conceptual process and environment are similar to the earlier case studies, as reflected in
Figure 28, but in this particular application, the interfaces to set the inputs were performed
through the WinRunner scripting language that has API functions that can, for example, set the
context to a particular window, push buttons, perform list menu selection, and edit data fields.
Section 7.4 provides details.

Figure 28. WinRunner Test Execution to Web Client

7.3 IMPLEMENTATION

The TAF team developed the model hand-in-hand with the analysis of the interfaces and
WinRunner scripting language. WinRunner, like other capture/replay tools, provides a tool,
called the GUI Spy, for identifying standard ActiveX and Java controls. It displays the properties
of standard controls and the properties and methods of ActiveX and Java controls. These are

7. Client-Server Web Application

51

used in the object mapping to relate the model variable to the controls of the web GUI
application.

The team generated a test driver to support three subfunctions (General, Categories, and Free
Text) and executed the generated script through WinRunner against a web browser (MS
Internet Explore) interface to the application on a PC. The team extended and completed test
driver mechanisms to support Strategic Problem Solving Login, and Participant information
collection.

The team corrected the problems with the manually developed WinRunner script provided as
initial input to this project. The model uses the more preferable Context Sensitive (as opposed
to Analog) method for developing and executing WinRunner scripts.

7.4 KEY GUIDELINES

Capture/Replay tools orient the tester toward design for testing a thread through one
application, and then a thread through another. This approach can be optimized using data
tables to drive a single thread. However, if there are common features such as testing illegal key
options for text field entries, different testers may spend significant time reentering the 50-plus
illegal ASCII, HTML, and XML keys using the same sequence down various threads of the
application. With TAF, which automates test design and generates scripts, a modeler would
build the model that covers the combinations of keystrokes that can be reused for all types of
text fields that require that type of testing. For more information on effective strategies,
references, and guidelines for web and GUI testing see Strategies for Web and GUI Testing
[Blackburn 2004].

7.5 RESULTS

The TAF approach captures requirements in addition to automated test generation support.
These features improve on both the manual testing and WinRunner approaches, where the
requirements must be “internalized” by the test engineer and then represented as a manual test
or a WinRunner test script.

A TAF model of the requirements separates the application requirements (and logic) from the
details of the test script, which is generated automatically to carry out the test. The requirement
models result in tests that cover application threads more thoroughly than traditional manual
approaches, and the requirement model is easier to review and assess and often provides the
only documentation of the requirements.

The TAF modeling found problems with the manually created WinRunner scripts.
Capture/playback tools are designed to record events either by context (object) or absolute
position (analog). Recording based on context, such as the object name, prevents invalidating
scripts when GUI controls are repositioned. Analog-based capture mechanisms store the
absolute pixel position of each user event. A well-known disadvantage of basing the tests on
analog-based screen location is that moving a button or menu a few pixels from the location that
was captured can invalidate a script and require recapturing the session before the test can be
reexecuted. During the analysis of the manually generated WinRunner script, the team
determined a more appropriate approach for generating test scripts for an embedded table entry

7. Client-Server Web Application

52

mechanism that is part of the Participant information. The object mapping fosters the
development of test drivers that are predictable across many requirements. This is a fallout of
the TAF process; the analysis support for test driver generation helps guide the use of common
and standard test driver mechanisms that apply universally to applications, while reducing effort
and maintenance.

The team identified types of web objects that did not support context control. The TAF process
[Blackburn 2004] promotes design for testability, which fosters early communication and
collaboration between the test engineers and developers. The team recommended that
developers use standard sets of constructs (web objects) that allow for better/consistent
mappings for context-sensitive-based testing automation, as described in the following example:

• In the SPS subfunction, where Participants are added, an embedded table is used to
implement Adding and Modifying locations to the Participant information. Several issues
related to the way the table addition mechanisms operate make it difficult to automate
with WinRunner using the Context Sensitive mode. The fallback case relies on using
physical screen locations, which is an approach that requires continual recapture of a
session for any minor change of an application.

The TAF team was involved in this company’s early stages of test automation evaluation. The
other candidate test automation tools, such as WinRunner, were also in the initial stages of use.
The TAF team did the following:

• Helped identify some key test automation requirements that were not apparent to
some of the company’s test engineers

• Helped illustrate how TAF automates the test design process through the
generation of test cases, whereas, WinRunner still requires the tester to
determine the different test cases

• Provided early support, which was later turned into the report “Understanding the
Generations of Test Automation” [Blackburn 2003]

• Provided an important initial contribution by recommending a plan for performing
an overall test automation evaluation, where a selected application could be used
as a basis for a comparison of various test automation approaches

• Provided some key insights about organizational and development changes that
would facilitate test automation

These insights and best practices were derived from performing pilot projects with other SSCI
members over the past 8 years and are recorded throughout these case studies.

53

8. DISTRIBUTED BILLING SYSTEM

8.1 PROBLEM

The application, the PTN-II Usage Parser, processes billing records. As shown in Figure 29,
there are several stages to the processing, which are done in parallel by separate distributed
processes. Raw usage data is provided in control (.ctrl) and data (.data) file pairs. Through the
COM process associated with the UNIX shell script run_com.sh.01, the raw data files are
renamed and moved from the ptn2ready subdirectory to the local_ready subdirectory. Next, the
PTN-II program is executed, and it moves and transforms properly formed control and data files
into several other subdirectories, such as the ready subdirectory used by the billing system and
the raw_ready subdirectory where inputs to the Usage Writer applications are placed.

Figure 29. Conceptual Process Flow of Billing Record

The member company has a strong interest in doing more test automation because the current
process is manually intensive, with a large number of combinations of information to process
within each billing record. Continually adding new features makes testing these features and
regression testing manually intensive. Often, testing is not performed in a comprehensive
manner because of cost and schedule constraints. A few attempts had been made by this
company to construct test scripts for automating the process, but no solution was ever
completed. Therefore, there were no example test scripts on which to base the test driver
generation process for supporting automated test execution.

The primary input is the Billing Specifications PTN-II Usage API document. It provides a good
description of the interfaces, but the requirements are vague. Testing relies on domain experts,

8. Distributed Billing System

54

who understand the requirements and the way the system processes information through a
multiprocess distributed application.

8.2 APPROACH

The objective was to develop models and test automation for the PTN-II Usage Parser. Figure
30 provides a high-level perspective of the process used to model, generate, and execute tests
against the PTN-II (ptn2) parser application. The model was created by working backward from
the interface definitions for the control and data records to ensure that all fields were complete.
The customer specification provided good information about the representation of both records;
however, the functional behavior (requirements), those associated with the actual values that
each field of the record could take on, was mostly not documented.

Figure 30. Distributed Billing System Modeling and Test Artifacts

8.3 IMPLEMENTATION

The TAF team worked with the company team, who described the requirement relationship
between the input data and the resulting outputs. Because the API document provided excellent
descriptions about the representation of the interface, it provided concrete information for the
object mappings. The model was developed in the tabular modeling tool TTM. The model was
translated, and test vectors were generated.

The TAF team helped the member company analyze the process by executing the COM and
ptn2 programs to understand how to construct a test driver schema for automating the test
execution. The team constructed object mappings that map logical model variables into fixed
field representations as defined by the PTN-II API document. The test vectors, combined with
the object mappings and test driver schema were input to the test driver generator, which
produced a Perl language test driver. The test driver generated raw usage a control file with

Test Driver
Generator

Object
Mapping

TAF
Translator

Test Vector
Generator

APP ModelAPP Model

Test Driver

Customer
Requirement
Specification

for
Usage

Application
Interface

Billing System

tafEC.pl

Test
Driver

Schema

8. Distributed Billing System

55

UNIX checksum derived from the corresponding data record. The test driver includes the check
to ensure that the transformed records are moved through the processing stages.

The test driver named tafEC.pl was created using TAF in a Windows 2000 environment. The
PTN-II and other related applications run under UNIX. To execute the test driver, the modeler
moved it to the networked UNIX environment using the File Transfer Protocol (FTP), as shown
in Figure 31.

Figure 31. Distributed Billing Application Test Execution

A telnet window on the Windows machine was opened to the UNIX environment, and the test
driver, tafEC.pl, written in Perl was then executed. The actual test data, which includes many
test cases represented as combinations of control and data pairs, were embedded within in the
Perl test driver. The Perl test driver looped through each test case, and for each test, a control
and data file pair were generated with a unique UNIX time stamp prefixed to the headers. The
generated control and data pair files were placed in the subdirectory of the COM process. As
shown in Figure 29, the COM process is running in the background and monitoring new records
that are placed in its subdirectory. The test driver checks to ensure that the files are renamed
and properly moved from the ptn2ready subdirectory to the local_ready subdirectory. Next, the
PTN2 tool is executed and the test driver checks to ensure that the files are moved from the
local_ready subdirectory to the ready subdirectory. The test driver records the results of the
checks as actual outputs that are then FTP’ed back to the Windows environment.

8.4 KEY GUIDELINES

This application reemphasizes the importance of interface-driven requirement modeling. This
company’s application interfaces with different companies or organizations that produce billing
data, and as a result, their interfaces are well-defined. This definition was useful because every
field of the billing record that needed to be modeled to create a valid billing record was known.
Unfortunately, the requirements that describe the semantics for setting those data record fields
to specific values were not as well-documented, but from a modeler’s perspective, knowing that
the interfaces exist makes it easier to ask questions until the requirements are extracted from
those individuals or documents that can provide the behavioral information.

ftp

From Windows 2000 Machine to
UNIX Machine for test execution

Execute tafEC.pl

• Generates .ctrl file with UNIX
cksum for .data file
• Executes COM process
• Check and report result

of COM
• Execute APP
• Check and report results
• Clean-up

tafEC.pl

Windows 2000 Machine

Control/Data
File Pair

represents
Billing Record

.ctrl
.data

Actual
Outputs

8. Distributed Billing System

56

The distributed and multiprocessing nature of the non-Windows target systems serves to
illustrate three more points:

1. It is possible to produce models and generate test cases in one environment, such as
the Windows environment, and produce test drivers that execute in a different target
environment. In working with member companies, it is common for the target
environment not to be Windows.

2. The distributed processing environment uses time tags that are part of the control and
data pairs to match those data pairs, as well as to uniquely distinguish different billing
records. This application illustrated how embedded test data in the form of control and
data pairs could be embedded within a program that is executed in the target
environment to generate the actual test data in real time by using the UNIX system time
function.

3. The outcomes associated with this particular application involved moving files, such as
the control and data pairs, to different subdirectories and renaming the files in the
process. In this case, the test driver served to monitor these events. However, if the real-
time processing was significantly faster, it is possible that the test driver would not be
able to monitor all the events. Therefore, an organization should make test logging part
of the test infrastructure when possible. As discussed in [Blackburn 2004], the system
designers should consider including other features that support testing, such as verbose
output, event logging, assertions, resource monitoring, test points, and fault injection
hooks [Pettichord 2002]. Verbose output and event logging can help trace bugs that are
difficult to replicate. Assertions report incorrect assumptions in the application when it is
running in debug mode. Test points and fault injection hooks support test execution
[Blackburn 2004].

8.5 RESULTS

The objective to develop models and test automation for the PTN-II Usage Parser was
achieved. Not only did the TAF team show that model-based testing applied to the company’s
application, but this was the first demonstration of test automation for this complex, distributed
processing application. The modeling process also captured undocumented requirements that
were known primarily by key developers.

TAF was demonstrated to apply to applications, where models developed in a Windows
environment can produce test drivers that execute against applications hosted on a UNIX
platform. The standard TAF process⎯used for embedded systems, mainframes, web-based
applications, and database testing, for example⎯was used for PTN-II applications. This use
means that this type of application is essentially the same as most other types of applications
(from a TAF, model-based test automation perspective). The following list summarizes some of
the benefits from requirement-based modeling:

• The TAF approach allows requirements to be captured in addition to supporting
automated test generation. This improves on the typical manual testing approach, where
the requirements must be “internalized” by the test engineer and then represented as a
manual test.

• TAF models of the requirements separate the application requirements (and logic) from
the details of the test script, which is generated automatically to carry out the test:

8. Distributed Billing System

57

− This provides requirement models that result in tests that cover application
requirement threads more thoroughly than a traditional manual approach.

− The model of requirements easier to review and assess.

Like many of the member companies, this member develops and maintains many applications,
and the requirements are known by a few key people in the organization but often are sparsely
documented. Modeling continues to be a useful process for documenting the requirements of
key applications owned and used by member companies.

8. Distributed Billing System

58

This page intentionally left blank

59

9. COMMAND AND CONTROL MONITORING
SYSTEM

9.1 PROBLEM

This member company produces large, complex systems that often integrate with other large,
complex systems. The application discussed in this case study performs a monitoring function
for many elements of an onboard command and control system. This, like many of the other
systems, continues to be evolved, and there are often many interactions among the various
systems. The requirement specifications for this element of the system span hundreds of pages.
There are many related requirements, but conflicting requirements are difficult to identify by
inspection because they often are packaged in different volumes with many versions. In
addition, the testing process is manual and performed on a requirement-by-requirement basis,
which again leaves conflicting requirements unidentified.

This case study focuses on software-system integration functionality that is tested manually.
The objectives were to demonstrate the capabilities of the
TAF/T-VEC tools and method and help this company do the following:

• Assess how they can formalize requirements using models

• Assess where test automation is feasible

• Construct and demonstrate a test automation framework tailored to their system and
environment

• Estimate the ROI over the existing manual test process

• Learn how to adopt technology and tailor processes

9.2 APPROACH

The names of the system elements have been changed to generic names to ensure anonymity
for this company.

The primary system component for the pilot project is called the XYZ element. This element is
part of a larger system call MASTER. There is requirement and interface documentation defined
for this system, but important details, known by project personnel, were not in the
documentation. The modeled requirements and associated tests primarily relate to messages
received, processed, and transferred between various components and systems of the XYZ
system. Currently, most of the testing is manual and performed against a target, although there

9. Command Control Monitoring System

60

is a simulator called XYZIPS that is used by the development organization to support test
scripting using a language call Slang Script.

The XYZ system interfaces with several other large system elements of the XYZ, as reflected in
Figure 32. From a high-level point of view, the MASTER system is composed of the XYZ, ABC,
EFG, and LMN systems.

Figure 32. Model Hierarchy

Figure 33 provides a high-level perspective of the typical modeling process for the program. The
objective is to use available requirement-related information, which comes in
B-spec-like requirement documents, detailed interface specifications for the various messages,
and some informal pictures that reflect analysis derived from requirement documentation and
domain knowledge of the project engineers. Requirement models are specified in TTM,
translated and T-VEC produces test vectors. The modeler, working with the requirement and
design engineers, must correct requirement defects. Interface information is used to relate
model variables to the actual system interfaces (API, message, etc.), and that supports
automatic test driver generation of scripts that execute against a host, target or simulated
system.

Timer Types Message Types

MASTER

XYZ
ABC EFG

Elements

LMN

Common
Interface
Modes

Subsystems/
Components

. . . CP IP DP

9. Command Control Monitoring System

61

Figure 33. Model and Test Automation Overview

9.3 IMPLEMENTATION

The member company in conjunction with the TAF team carried out the TAF/T-VEC evaluation
over three different phases. During the first phase, the TAF team was successful in developing
models for various requirements and scenarios that were allocated to the XYZ system. The
team worked from the documentation with knowledge from the key engineers to model 67
requirement threads resulting in 121 test vectors during the first 2 days of the pilot projects.

One of the model scenarios reflects the timed sequence interaction between two subsystems of
the XYZ system (CP and IP), and the interaction to the XYZ. The company provided models to
the team. An example textual specification follows:

• If in the Start state (mode), the incoming message is 100, the prompt is YES, and the IP
is UP, then the system should transition to the Prompt state.

• If in the Start state, the incoming message 104, the prompt is YES, and the IP is DOWN,
then the system should transition to Failure state.

• If in the Prompt state, the incoming message is 111, the prompt is YES, and
prompt_timeout < PROMPT_TIMEOUT (has not timed-out), then the system should
transition to the Ready state.

After developing some models for a number of these different scenarios, the team discovered
that there were common models such as those reflected in Figure 32 called Timer Types and
Message Type. The team was able to take advantage of the model include capabilities
described in Section 2.5.2.3 to model the requirements once and then reuse the models for
other related requirements. Section 14.4 describes this concept in more detail..

9. Command Control Monitoring System

62

Between the first and second pilot visits, the key modeler developed a model that had 52
requirement threads with 77 unique test vectors. During the second phase, the team focused on
developing test drivers for this model. The team developed a Slang Script that was executed
through the XYZIPS simulator, and produced expected results that were observable in the data
recorder logs produced by the XYZ system.

The team helped in the following ways:

• Identified some limitation in the XYZIPS simulator; it could execute only about 20
test vectors per test script. To overcome this limitation, the team modified the test
driver schema to break large test driver script files into incremental files, each
containing 15 test vectors.

• Identified some design for testability issues that need to be addressed with both
XYZ system and XYZIPS to provide more general support for test automation.

• Talked with both the XYZIPS simulator developers and the XYZ system
developer who indicated that future versions of both systems could be modified
to support greater testability. For example, one key change would increase test
automation by providing GUI events issued using messages rather than by a
manual interaction with the system; this would permit the XYZIPS simulator to
issue a program-generated message to the XYZ system without a human in the
loop. Such commands could be generated by TAF.

The team next focused on the final stages of the test automation process, including automated
test execution, results analysis, and test report generation. The team created a test results
analysis program that extracted actual outputs from the raw data recorder information that is
processed as a standard part of the XYZ process. These data recorder records provide the
actual test outputs that are compared against the expected outputs produced by TAF/T-VEC.
The comparison is recorded in an HTML test report file. Figure 34 shows the conceptual
environment.

Figure 34. Fully Automated Test Automation Process Flow for XYZ Testing

Data
Recorder
Output

Cross
Compare

Test Results
Report

Test Driver
Generator

Test Driver Files
(Slang Scripting Language)

T-VEC Tabular Modeler

Expected Outputs

Models created for
functional requirements

and interfaces for message

Test Vector
Generator

PC/Windows UNIX

System
Elements
Simulator

Onboard
System

(~20 processes)

9. Command Control Monitoring System

63

9.4 KEY GUIDELINES

9.4.1 ADOPT A TECHNOLOGY TRANSITION PLAN

The TAF team recommends that companies adopt a technology transition plan that grows the
staff from the specialist developed in a prior project or pilot effort. The key modeler for this
company demonstrated the skills of a model-based testing technologist, fulfilling the roles of
both a modeler and test automation architect. He/she should be capable of carrying the
recommended technology transition by leading one to six people in the use of the
aforementioned process for a small set of requirements for the next release of some system
baseline. The follow-on project then has additional team members to expand the team, where
each person can mentor one to three additional people. When a company has a base of three to
four project-experienced, model-based testing technologists, a larger group of 15 to 20 people
can be trained to start a large project. SSCI provides generalized training using the Model-
Based Development and Automated Testing course [Consortium 2003a] as a member service.
In addition, we have tailored this course for different organizations, including this company, so
that the course exercises use company-specific examples derived from the pilot project.

9.4.2 USE MODEL-BASED TESTING WITH OTHER TYPES OF TESTING

Model-based testing does not have to be all or nothing. Model-based testing can support a large
percentage of the testing process, with a need to perform other types of testing. For example,
there are two classes of messages processed by the XYZ system: solicited and unsolicited.
According to COMPANY X resident expert, at least 70% of the messages sent to XYZ are
unsolicited messages, sent by other XYZ elements that must be processed by XYZ without
additional communication with the other elements. Figure 34 shows a complete end-to-end test
infrastructure and process for handling unsolicited messages.

9.4.3 COLLABORATE WITH DEVELOPERS TO ADD TESTABILITY SUPPORT

For solicited messages, which are initiated by XYZ, usually through manual event, there is a
need to enhance the testability of the current XYZ system in order to achieve complete test
automation. External to the XYZ system, there is a need to have better controllability to simulate
the external environment without manual intervention. It is also necessary to have some
additional enhancements to the system for predictable observability of the test outputs. The
team discussed the need, with the developer, to add a programmatic interface to the system
that would allow external programs to stimulate system events such as solicited messages. The
lead developer said it would be feasible and relatively inexpensive to implement the
recommended programmatic interface in the next release.

9.4.4 USE SIMULATION FOR EARLY AND CONTINUOUS TESTING

Coincidently, the XYZIPS simulation team was planning to develop a new simulator, and they
were open to taking new requirements. Although there were a few limitations in the old XYZIPS
simulator, the TAF team’s use of the simulator was valuable in providing requirements to further
enhance their simulator. We were able to overcome the XYZIPS limitation where the system
cannot execute a Slang Scripts with more than about 20 tests. We modified the schema to
produce multiple test driver files containing only 15 test cases each. We added a parameter that

9. Command Control Monitoring System

64

can be used to configure the test driver schema to put any number of test cases in a single test
driver file.

9.4.5 LEVERAGE SYSTEM INTERNALS FOR ANALYZING ACTUAL TEST OUTPUTS

Design for testability is key to test automation because it is important to be able to
programmatically set inputs or initiate events, as well as obtain outputs that reflect the system
behavior. The XYZ system receives thousands of messages but does not necessarily send out
a response for each message; however, it does have a data recorder (i.e., internal logging) that
collects all message inputs and associated process outputs. This member company lead
determined that the raw data recorder file could be processed to extract actual outputs for
automated test results analysis. The TAF team developed an XYZ test results comparison
program in Perl to extract the actual outputs from the data record file and compare them with
the expected outputs produced by the test vector generator, while producing an HTML test
results report.

9.5 RESULTS

The pilot effort was successful in demonstrating an automated, end-to-end test process, as
shown in Figure 34, that could be an order of magnitude more comprehensive than manual
testing with 50% less time and cost. Prior to the pilot project, nearly all system and integration
testing was a completely manual process. The pilot demonstration resulted in a few hundred
test cases that represented several thousands of cases that are normally executed manually
when the system capability is first developed, but then manually executed many times for each
time the system is regression tested.

Using the TTM, various requirements were modeled from XYZ requirements, interface
specifications, and domain knowledge of resident experts. The test design process was fully
automated using automatic test vector generation from the models and test driver generation
capabilities to produce test scripts that automatically execute through the XYZIPS simulator.
XYZIPS interfaces to XYZ by sending messages in a manner equivalent to all other MASTER
system elements. XYZ processes each test message, and a data recorder process within XYZ
captures all internal processing details, which are output to a data recorder file. The automated
test results analysis is performed by comparing the expected outputs, which are derived from
the model and test vector generator, with the actual outputs that are extracted from the data
recorder information produced by XYZ.

The pilot project results are significant because the demonstrations were conducted using XYZ
message requirements that represent 70% (or possibly more) of XYZ message processing, for
which tests are currently performed manually. To carry out additional testing using this TAF/T-
VEC process will require some minor changes to XYZIPS and XYZ. The pilot demonstrated the
feasibility of using company technical staff to develop models. With just the initial 2-day pilot
project training, the key member company modeler (primarily systems tester, not program
developer) developed additional models for different types of messages and extended the test
driver schemas to support Slang Script generation. The pilot demonstrated the feasibility to
generate test drivers automatically in the script language that is interpreted by the XYZIPS
simulator when it communicates to XYZ. The test results report is produced in HTML format
through a cross-comparison program that compares the expected outputs with the actual

9. Command Control Monitoring System

65

outputs stored with the raw data recorder output of the XYZ system. The test infrastructure for
test driver generation and automated test results analysis and report generation are sufficiently
robust to support follow-on XYZ model-based testing tasks.

There are many other intangibles ROI benefits. This process and the supporting test
infrastructure used to support this pilot demonstration was 80% to 90% complete and relatively
stable to support all follow-on testing. In addition, the team identified several requirements for
the testing infrastructure that could further automate the process or change the underlying
process for the organization. For example: Once an automated test suite exists, it can be run
each time a build of the system occurs, allowing developers to identify bugs earlier in the
process and making it easier to understand the specific changes that introduced a defect into
the system rather than waiting weeks or months before manual testing is performed.

Another important benefit that was observed during the requirement modeling process is that
important requirement details often are not reflected in the requirement documents. Once the
model is developed, these important details are captured (from domain experts). Related
requirements that often span different pages in a requirement document are captured in the
same model. Companies often find that the captured models are the most valuable asset
because they not only specify requirements in a nonambiguous manner, but they are the source
of the tests that can be generated systematically to provide complete test coverage from the
requirements.

The first use of this technology requires some learning, but the first use by other companies
indicates that even in the first use there is a significant increase in test coverage in less time
than with existing manual processes. The key ROI gains should be obtained with each addition
regression testing session that occurs. For this company, the time required for regression
testing is essentially the same as it is to test the first time. With this automated process, the time
to perform regression testing is easily less than 50% of the original time and cost and can be as
little as 10%.

The TAF team executed a complete demonstration of the process to the management team,
showing the new process successfully applied to their target application.

9. Command Control Monitoring System

66

This page intentionally left blank

67

10. TIME CARD LOGIC PROCESSING

10.1 PROBLEM

This company produces both internal and external applications. They were interested in
advancing their testing processes and selected one component application of the supporting
infrastructure to use in an evaluation of the TAF/T-VEC tools. The application is a component of
a time card processing system. The requirements are not well documented, but are understood
by key staff. They current process relies on the manual creation of data and manual analysis of
the outputs. They are interested in how to better automate testing.

10.2 APPROACH

The approach followed the common pattern for model development as shown in Figure 35. The
company team sketched the rules for the timecard logic on a whiteboard and then modeled
them. Test vectors were generated. Object mappings were created to describe the relationship
between the modeled variables and detailed representation of the fields of the records output to
the time_cards_subtotal.txt file.

Figure 35. Time Card Logic Modeling Process

Test
Driver

Schema

Test Driver
GeneratorTAF

Translator

Test Vector
Generator

Timecard
Model

Object
Mapping

Expected Outputs

Actual Outputs

Cross
Compare

Test Results

time_card_subtotal.txt Test
Environment

10. Time Card Logic Processing

68

10.3 IMPLEMENTATION

The model, shown in Figure 36, had one output that was associated with information related to
the rules for time cards for exempt and non-exempt employees, in addition to a time card
ordering requirement that describes a rule to ensure that each time card has a proper number of
hours. Section 10.4 describes details of the model and some new concepts. After translating the
model and generating test vectors, 110 unique test vectors were produced using a translation
option called “inlining.” Lastly, the 110 test vectors resulted in 265 time card records. Section
10.4 also discusses the inlining concept and the time card records.

Figure 36. Time Card Logic Model

10.4 KEY GUIDELINES

10.4.1 MODELING PRACTICES

This section discusses several recommend practices, including the use of naming conventions,
terms that can be reused throughout the model, constants, and traceability links to
requirements. Figure 37 shows an example of the output condition table for the output variable
total_out.

10. Time Card Logic Processing

69

Figure 37. Time Condition Table for total_out

The TAF team added the time card processing requirements directly into the TTM tool, however
requirements can be linked from the DOORS requirement management tool as discussed in
Section 2.5.2. Traceability is easiest to follow, if there are a few requirement statements
associated with one requirement identifier. One or more requirement identifiers can be linked to
one row of a condition table as shown in Figure 37. Consider row 1 for example, the conditions
when an exempt (i.e., salaried) employee satisfies the constraint where the minimum hours
(t_min_hours) are equal to the expected regular number (t_regular) of hours for that pay period
is associated with the requirement identifier (ReqID) Req_exempt_rule_min_hour as shown in
Figure 37. Row 2 defines the conditions for balancing the hours for an exempt employee, when
the minimum hours worked is not equal to the regular expected hours for a particular pay
period; this is done by balancing the vacation, holiday, and sick hours. Row 3 defines the
conditions for defining the total hours for a non-exempt (i.e., hourly) employee.

It is a good practice to define common conditions or expressions that are referenced by other
tables in a term table. For example, the term t_regular defines the condition and expression for
the regular number of hours, as shown in Figure 38. When the regular, admin, or nopay hours
are greater than 0, the term t_regular is equal to the sum of those hours. Also note that a prefix
of “t_” is used before each term variable. This makes it easier to identify named expressions
that are terms rather than input variables or constant.

Figure 38. Term Table for Regular Hours

The term table for the minimum hours (t_min_hours) is shown in Figure 39. This term defines
the number of hour increments in a pay period. A pay period can be 10 days, where each day
consists of 8 hours. It is also a good practice to use upper-case characters for constants such
as HOUR_INCREMENTS. This makes it easy to distinguish constants from input variables and

t_regulart_regular

10. Time Card Logic Processing

70

terms. As shown in Figure 37, it is recommended also that enumerated constants such as
EXEMPT be defined in upper-case characters.

Figure 39. Term Table for Minimum Hours

The term table for the scenario where the regular hours worked by an exempt employee does
not meet the minimum required hours for a pay period requires the employee to use either sick,
holiday, or vacation hours. The rules for covering those particular conditions are shown in
Figure 40. Each row is logically an exclusive OR’d situation from each of the other rows in the
table. Note, that the assignment for each row is simply TRUE, which means that this condition
could have been modeled as an assertion because at least one condition must be TRUE (i.e.,
there are no FALSE conditions for this particular table). For example, row 1 defines the case
when the employee must use vacation hours when the holiday and sick hours are 0, while row 4
forces the t_min_hours to be equal to the sum of the t_regular, sick and vacation hours because
holiday hours equals 0.

Figure 40. Term Table for Ordered Conditions

10.4.2 TEST VECTOR GENERATION FROM HIERARCHICAL MODELS

Each table of the model is translated into a T-VEC subsystem. A T-VEC subsystem has
declarations of types, constants and variables, and then contains a section that represents the
assignment part of the table and associated constraints that represent the information contained
in the column labeled Condition. For details on the T-VEC linear form, refer to the T-VEC
Language Reference Manual, which comes with the tool installation. T-VEC generates test
vectors for each subsystem in the hierarchy, as shown Figure 41. By default a translated model

t_min_hourst_min_hours

t_ordered_conditionst_ordered_conditions

10. Time Card Logic Processing

71

is compiled into a set of pre and postcondition pairs. A precondition (Domain Convergence Path
[DCP]) defines constraints on inputs associated with conditions in a model table. A
postcondition defines the output as a function of the constrained inputs and is associated with
the assignment of a model table.

Figure 41. Hierarchical Model and Translated Representation

By default, the translation converts outputs tables as well as term tables into subsystems that
are related hierarchically. T-VEC subsystems have properties, which are stored in the T-VEC
project file. Term tables, by default, have a compile-only property that is enabled. Test vectors
are not produced for subsystems with the compile-only property. Normally, it is not necessary to
produce test vectors for a term table because there is no output associated with the term
variable.

To generate test vectors, T-VEC first compiles the translated model. The compilation process
performs three primary functions, as follows:

• Converts the specification into a form, called system knowledge, that is appropriate for
processing by the test vector generator; this includes detailed information about the data
types, variables, and the behavioral specifications that are referred to as DCPs.

• Checks that interface references to other hierarchically dependent subsystems are
correct syntactically. Unless there is an model error that is ignored prior to translation,
the translator should produce the proper interface references to hierarchically related
subsystems.

• Constructs test justification paths that are used in test coverage analysis to assess the
extent of the model-based test coverage.

10. Time Card Logic Processing

72

The compilation process ensures that the target specification is syntactically correct and that
references to other “external” system specifications are semantically correct with respect to the
input/output type definitions of the system being referenced. Once the compilation process
completes, the results are stored in a system knowledge file.

TAF supports hierarchical relationships. In generating test vectors for a hierarchy of models, as
represented in Figure 42, the test generator selects test cases for the DCP paths of the high-
level components (e.g., Grandparent) without regenerating all the test vectors for each
referenced lower-level subsystem. The test vector generator bases the test selection on the
DCPs for the upper-level subsystem (Grandparent), not the combination of DCPs for the parent
and children subsystems. This mechanism precludes the combinatorial explosion associated
with tests generated from the combination of constraints in a hierarchy of subsystems.

Figure 42. Hierarchical Subsystem Relationships

The project status, shown in Figure 43, reflects that there are six test vectors generated from
the three DCPs of the parent-level subsystem total_out. Each row of the total_out table, shown
in Figure 37 corresponds to one DCP. The T-VEC test generation system uses a test selection
heuristic based on domain testing theory [White 1980] where test values are selected for each
constraint. Domain testing theory is based on the intuitive idea that faults in implementation are
more likely to be found by test points chosen near appropriately defined program input and
output domain boundaries [Tsai 1990].

Figure 43. Project Status for Time Card Model

Child
DCP 1
DCP 2
…

DCP k

Parent
DCP 1
DCP 2
…

DCP j

Parent
DCP 1
DCP 2
…

DCP j

Grandparent
DCP 1
DCP 2
…

DCP i

Grandparent
DCP 1
DCP 2
…

DCP i

10. Time Card Logic Processing

73

10.4.3 MODEL DEFECTS

A reference from an upper-level subsystem to a lower-level subsystem must be satisfiable by at
least one DCP in the lower-level subsystem. Constraints of the upper-level subsystems are
applied to the parent DCP before the references to any child subsystem are considered. Each
DCP of the child is ANDed with the DCP of the parent until the combination is satisfied. If there
is no DCP thread from a higher-level subsystem to a lower-level subsystem, this proves that
there is no input space associated with the model (i.e., the input space for the DCP is null).
When generating test vectors, the inputs are selected from the inputs, but if the input space is
null, no tests can be selected; this is an invalid specification within the model.

The example in Figure 44 represents a trivial model with four condition tables. This simplified
model has a seeded defect to illustrate the model traceability links from a model report to the
model. The tables have dependency relationships to illustrate the use of model traceability.
Each row of each table in the transformed model has a one-to-one correspondence with a DCP
thread. The highest-level subsystem, hierarchical_root has one DCP that references child_yz,
and parent_xy, each with two DCP threads. Parent_xy references child_xy, which also has two
DCP threads.

Figure 44. Hierarchical TTM Model

Figure 45 shows the traceability links from the status and error reports to the likely source of the
model error. The status report provides a summary for each subsystem, including the number of
DCPs derived during the compilation process of the model. The summary report provides the
number of test vectors and the number of model coverage errors. Hyperlinks from the project
status report link to other reports, including the model defect error report, which is produced for
each DCP that has a defect. A hyperlink from the model error report traces back to the model
specification that is the likely source of the problem.

hierarchical_roothierarchical_root

parent_xy

child_xy

child_yz

10. Time Card Logic Processing

74

Figure 45. Model Defect Traceability to TTM

The defect exists because there is no combination of DCP threads through the lower-level
subsystems that permit both x and z to be greater than 0 when the output (i.e., assignment) of
hierarchical_root must be TRUE. The model child_2_xy requires y <= 0 when x > 0, but
child_2_yz requires y > 0 when z > 0. Thus, a contradiction exists between the logic of
hierarchical_root and logic across two dependent subsystems. This is a trivial example, but this
type of situation is commonly called a feature interaction problem. Section 11 discusses this
issue in more detail.

10.4.4 TEST VECTOR GENERATION FROM INLINED TABLES

T-VEC subsystems generated from inlined subsystems contain the logic for inlined subsystems
and are tested within the parent. Conceptually, the translator forces the DCPs of the lower-level
subsystems to be included in the higher-level subsystem as shown in Figure 46. Inlining forces
every combination of lower-level subsystem to be AND’ed with every lower-level subsystem.
This can result in a large number of combinations but generates the tests that support
comprehensive testing from the higher-level system. This is sometimes needed to tests the
implementation associated with lower-level subsystems that do not have accessible code entry

Status Report

Model Defect Error Report

Hyperlink to
Model

10. Time Card Logic Processing

75

points, and therefore the testing must be performed through the Parent’s (or Grandparent’s)
code entry points.

Figure 46. Inlined Subsystems Included in Higher-Level Subsystems

The project status, shown in Figure 47, reflects that there are 110 test vectors generated from
the 95 DCPs of the parent-level subsystem total_out once the term tables were inlined. The
resulting test vectors exercise all combinations of the time card processing logic.

Figure 47. Project Status for Time Card Model With Inlined Term Tables

10.5 RESULTS

The modeling process illustrated how textual requirement definitions or nonexistent
requirements can be improved. The modeling process also helped capture the key requirements
that were most completely understood by the most senior member of the team. The generated
tests were significantly more comprehensive than the typical test sets that are performed
manually. The TAF team produced test inputs from the model in a format that required two files:
a time card status file, and a time card subtotals format. The team then changed the test driver
to produce a consolidated test input in one file, as reflected in Figure 35. These changes were
done without any modification to the model. Rather, a few changes were made to the object
mapping to consolidate the generated test information into one file that was loaded into the test
environment where it was executed.

This relatively simple example illustrates several common situations within member companies.
Modeling is sometimes the only way requirements are captured for applications. It is common

Child

DCP 1

DCP 2

…

DCP k

Parent

DCP 1

DCP 2

…

DCP j

Grandparent

DCP 1

DCP 2

…

DCP i

10. Time Card Logic Processing

76

for a few key technical staff members to understand the requirements that are not universally
understood or documented. Model-based development fosters the development of interfaces
that support automated test injection and test results analysis. It is also common for traditional
testing, often manual, to be less than comprehensive. If testing and results analysis are done
manually, developing and executing 110 test cases can take significant time and effort. This
example illustrates that it is relatively straight- forward to capture the time card processing logic,
and through the use of inlining mechanisms, generate all combinations of options in test cases
that can be executed automatically. The example briefly illustrates the use of requirement
management and requirement traceability linkages. As systems become more complex,
requirement traceability is useful in assessing the completeness of the testing process, and it
also speeds failure analysis.

77

11. FLIGHT GUIDANCE MODEL LOGIC

11.1 PROBLEM

Incomplete, ambiguous, or rapidly changing requirements can have a profound impact on the
quality and cost of software development. In an effort to provide a more rigorous approach to
flight-critical system development, Rockwell Collins used some formal approaches to develop
the mode control logic of a Flight Guidance System (FGS) for a General Aviation class aircraft
[Miller 1998]. However, they believed that the complexity of the system and models for real-
world applications such as the FGS system would be too complex to analyze manually. They
believed that tool support would be the only way to systematically assess such models.

This case study discusses the results of a Rockwell Collins study where they used an early
version of TAF tools for model-based analysis and test automation to analyze the requirement
model and generate tests for a new implementation of the FGS system.

11.2 APPROACH

Rockwell Collins used the Consortium Requirements Engineering Method (CoRE) [Faulk 1993]
and SCR methods to specify the requirements for the mode logic of an FGS. An FGS compares
the measured state of an aircraft (position, speed, and attitude) to the desired state and
generates pitch and roll guidance commands to minimize the difference between the measured
and desired state. The mode logic accepts commands from the flight crew and a variety of
systems, such as the Flight Management System (FMS).

As reflected in Figure 48:

• FGS requirements were specified using variants of the SCR method.

• The first variant, referred to as CoRE, had no tool, but through a precise manual
language and inspection technique, Rockwell Collins was able to identify 33 requirement
defects.

• The second variant, based on a tool for SCR, revealed 27 additional defects through
automated tool analysis.

• The third variant, based on T-VEC tools, revealed an additional six defects not
previously identified.

• The fourth variant, based on Offutt method [Offutt 1999] revealed two defects.

11. Flight Guidance Model Logic

78

• The fifth variant, based on a second generation of TAF tools, revealed an additional 25
defects for a total of 85 defects.

Figure 48. Model Evolution and Analysis

11.3 IMPLEMENTATION

The FGS model contains 78 SCR tables, including 47 condition tables, 14 mode transition
tables, and 15 event tables. The FGS model was translated into 78 T-VEC subsystems, each
corresponding to an SCR table. Translation and processing by the T-VEC tools produced 884
unique DCPs. The T-VEC test generation system uses a test selection heuristic based on
domain testing theory where low-bound and high-bound values are selected for each constraint.
By default, T-VEC attempts to determine two test vectors for each DCP, one with low-bound
values and another with high-bound values. Therefore, test generation should have produced
1,778 test vectors. However, because of latent errors remaining in the FGS SCR specification,
only 1,700 test vectors were produced.

Table 3 summarizes the classes of defects identified. The first 2 rows indicate that 10 newly
discovered model contradictions resulted in 25 model defects. The missing test vectors
occurred because these contradictions produce unsatisfiable DCPs. Informally, from a test
generation perspective, a specification is satisfiable if at least one test vector exists for every
DCP. If a test vector is not produced for a DCP, it probably contains a contradiction (aka a
requirement defect, a feature interaction problem). Each contradiction involved at least one
event or condition table and at least one mode table. An additional 21 faults of various types in
the implementation resulted in 95 test failures. The test cases also revealed six known bugs.
For more details, see [Busser 2001].

Model
Analysi
s Technique/Tool

FGS Textual
Requirements

1995

FGS CoRE
Text - Based Model

Inspections

33

1997

27

Unique Defects

SCRtool
Analysis

FGS SCR
Model V1

1998

FGS SCR
Model V9

6

TAF 1.0/
T - VEC

Offutt
Tool

2

2001

TAF 2.0/
T - VEC

25

1999

Approx.
9 Revisions

Flight-Critical Embedded System Rockwell Collins Pilot: Flight Guidance System (FGS) -

11. Flight Guidance Model Logic

79

Table 3. FGS Analysis Details

Defect Description Defect
Type

Unique
Defects

Total
Defects

Invalid event expression for related mode table Model 5 7
Invalid constraint for dependency Model 5 18
Mode transition implemented incorrectly Code 2 3
Specification not implemented Code 1 1
Variable referenced before set Code 3 26
Incorrect implementation of mode logic Code 1 4
Incorrect code (likely cut/paste error) Code 1 1
Incorrect event implementation Code 3 44
Hidden bug – coincidental correctness Code 1 2
Unmodeled domain knowledge Code 3 8
New Errors 25 114
Known bugs Code 6 6
Total Errors Detected 31 120

11.4 KEY GUIDELINES

Over the 8 or so years of working with members, the TAF team has noticed that event
specifications can be tricky to specify. A significant percentage of the modeling errors relate to
the use of event specifications. It is important to consider the subtle implications of inherent
states when using event specifications in models.

11.5 RESULTS

TAF and T-VEC identified defects missed by manual inspection and other tools and methods.
Rockwell Collins’ evaluation of the model-based analysis and test generation approach
demonstrated to management that tools provide a more systematic and comprehensive
approach to support cost-effective development of complex, safety-critical software. These
situations are common as reflected by another member company (that prefers to remain
anonymous) that had similar results. The pilot study, conducted by a member company,
comparing formal Fagan inspections with TAF requirement verification, revealed that Fagan
inspections uncovered 33 defects. In comparison, as shown in Figure 49, TAF uncovered all 33
of the Fagan inspection defects plus 56 more. Attempting to repeat the Fagan inspection did not
improve its results. The improved defect detection of TAF prevented nearly two-thirds more
defects from entering the rest of the development life cycle.

Figure 49. Fagan Inspections Versus TAF/T-VEC

33U
ni

qu
e

D
ef

ec
ts

Id
en

tif
ie

d

33

56

Fagan
Inspections

TAF / T-VEC
Requirement Modeling

and Automated Analysis

= 89

11. Flight Guidance Model Logic

80

More recent applications of T-VEC solutions by Rockwell Collins have demonstrated its total
software development costs using a full model-based development environment, including
autocode and autotest, could save up to 52% of development cost on safety-critical products.
For more details, see [Busser 2000].

The results illustrate the importance of using tools to support the analysis of complex systems.
As the analysis by Rockwell Collins points out, both applications and the associated
requirements are too complex to analyze without the use of tools. This historical evolution of the
original FGS model used inspections to remove model defects and the SCRtool model analysis
capabilities to identify problems in individual tables. The first generation TAF/T-VEC tools and
the Offutt tool were able to detect additional faults, including those related to multiple tables.
The latest version of the TAF/T-VEC tools identified many model defects that primarily involved
multiple tables. In addition, these tools helped uncover many additional faults in the
implementation. Model defects and implementation faults similar to those discovered occur
commonly in complex systems. As software-based systems continue to evolve, the capabilities
demonstrated can provide greater assurance that these systems operate dependably.

81

12. DATABASE SECURITY

12.1 PROBLEM

The cost of developing and performing security functional testing is costly, and the increased
demand for product variations is increasing the cost impacts on security evaluation laboratories.
In addition, there is a need to better understand Security Functional Testing for various Security
Functional Requirement (SFR) classes in ISO/IEC 15408 [ISO/IEC 1999]. NIST had an
objective to develop a methodology and architecture for partially automating the security testing
process for testing the security worthiness of a product or system.

Companies and government agencies use commercial products, and security is essential.
Databases often are central to many enterprise systems, and the secure management of data is
critical. In order to supply products to government organizations, vendors often must supply a
Common Criteria Security Target (CST) for their specific product. This case study describes
models and tests for the functional security properties derived from the Common Criteria of the
Oracle8 Database Server, Release 8.0.5.

12.2 APPROACH

The CST defines the Target Of Evaluation (TOE) SFRs [Oracle 2000]. These requirements are
mapped to TOE Security Functional Specifications that provide a more Oracle-based detailed
functional specification that is traceable to the SFR (For details see Table 5 in the Oracle8
Security Target at http://www.commoncriteriaportal.org/public/files/epfiles/o80_st.pdf). The
Oracle Corporation claims that the TOE Security Functionality (TSF) found in the Oracle
Database Server meets the SFRs. The effort to demonstrate compliance with the security
properties involves modeling the TSF, and then generating tests that are executed against the
Oracle database for each requirement. These requirements are grouped into the following
categories:

• Audit generation

• Identification and Authentication

• Security Management

• Session Management

The CST uses a naming convention for each requirement as specified in Table 5 of the Oracle8
Security Target at http://www.commoncriteriaportal.org/public/files/epfiles/o80_st.pdf. For
example, the Grant Object Privilege specification is labeled F.APR.GOP, and the related

12. Database Security

82

specification for Revoke Object Privilege is labeled F.APR.ROP. The model for each functional
specification is named using the label field; however, an underscore character is substituted for
the period because the period character is not a valid character in the modeling tool. Therefore,
F.APR.GOP is named F_APR_GOP in the new version of the specification.

An interface-driven approach is used to identify common tables and SQL commands, and then
models are defined for the requirements in terms of those interfaces. This then supports
common test driver mappings that can be extended and maintained as the product evolves.
Table 4 summarizes the requirements for some of the specifications and identifies data
dictionary items that are part of the interface associated with each specification.

12. Database Security

83

Table 4. Mapping of Specifications to Interfaces

Requirement
Area Model Element Data Dictionary Items Requirement Summary

Object Access
Control

F_APR_DER
DBA_ROLE_PRIVS
SESSION_ROLES Disable Roles

F_APR_EDR
DBA_ROLE_PRIVS
SESSION_ROLES Enable roles

F_APR_GOP DBA_TAB_PRIVS Grant object privileges

F_APR_GRR DBA_ROLE_PRIVS Grant role privileges

F_APR_GRSP DBA_SYS_PRIVS Grant system privileges

F_APR_ROP DBA_TAB_PRIVS Revoke privileges

F_DAC_OBID ALL_OBJECTS-objects accessible to the user.
Every object uniquely identified, even
if deleted

F_DAC_OBA
USER_OBJECTS – objects owned by the user.
USER_OBJECTS – objects accessible to the user.

TOE enforces data access control on
objects based on object owner
identify and granted privileges

F_DAC_POL
DBA_TAB_PRIVS
SESSION_PRIVS

Control of operation between
subjects and objects based on rules:
object owner, session privilege,
system privilege, Database
Administrator (DBA)

F_DAC_SUA
USER_OBJECTS – objects owned by the user.
ALL_OBJECTS – objects accessible to the user.

TOE enforces data access control on
objects based on user session
identify and session privileges

Identification
and

Authentication
F_IA_ATT

ALL_USERS – information about users of database.
USER_USERS – information about current user.
DBA_USERS – information about users of database.
SESSION_PRIVS – privileges currently available to user.
DBA_SYS_PRIVS – system privileges granted to users/roles.
SESSION_ROLES – roles that are currently enabled to user.
DBA_ROLE_PRIVS – roles granted to users and roles.
USER_ROLE_PRIVS – roles granted to user.
USER_RESOURCE_LIMITS – resource limits for current user.

Data dictionary contains a unique set
of security attributes for each user,
including their username, privileges,
roles, and resource limits that can be
displayed and modified by suitably
privileged users using standard SQL
commands.

F_IA_CNF Subsumed
Only a suitably authorized user can
create a database user

F_IA_IDE Subsumed
TOE is able to establish the identity
of the user

F_IA_UID ALL_USERS
Each database user is uniquely
identified

Access Control

F_LIM_CNF
DBA_PROFILES – displays all profiles and their limits.
DBA_USERS – information about all users of the database.

Alters the default Resource Profile for
a database and creates and alters
specific Resource Profile

F_LIM_NSESS V$LICENSE

TOE prevents a user from creating
more than the maximum number of
concurrent sessions specified for that
user

F_LIM_POL
DBA_PROFILES – displays all profiles and their limits.
DBA_USERS – information about all users of the database

TOE enforces the limits specified by
the resource profile or default profile.

F_LIM_RSESS
DBA_PROFILES – displays all profiles and their limits.
DBA_USERS – information about all users of the database.

TOE terminates operation or session
if user attempts to perform an
operation that exceeds the specified
resource limits

12.3 IMPLEMENTATION

This section uses the Grant Object Privilege requirement specification as an example to
describe the implementation of the functional security requirements. This Grant Object Privilege

12. Database Security

84

requirement should be understandable without in-depth knowledge of a database. Within a
database object, the user can create such a database table. The user that creates the object is
the owner and has privileges to access the table. In addition, the owner has the privilege to
grant other users access to the table, including granting privilege to other users. The Grant
Object Privilege requirement in the Oracle TOE states:

A normal user (the grantor) can grant an object privilege to another
user, role or PUBLIC (the grantee) only if:
 a) the grantor is the owner of the object; or
 b) the grantor has been granted the object privilege with the GRANT
OPTION.

Model variables are used to represent database tables, objects, privileges, and relationships.
The SQL operations that are related directly to the granting of the object privileges include:

GRANT <privilege> ON <object> TO <user | role | PUBLIC> [WITH GRANT
OPTION]

Where <privilege> can be: ALTER, EXECUTE, INDEX, INSERT, READ,
REFERENCES, SELECT, UPDATE, ALL, and the GRANT OPTION is optional.

And, where <object> is a database schema object like a table, view,
sequence, procedure, function, package, or snapshots.

And, where <user> is a database user, <role> is a defined database
role, and <PUBLIC> represents all users.

However, there are some initial privileges and dependent SQL commands that are related to the
GRANT SQL command. These involve the creation of a user, role, or session, as follows:

• When a user is created with the CREATE USER command, the user’s privilege is empty.

• To log on to Oracle, a user must have the CREATE SESSION system privilege. After
creating a user, the user must be granted this privilege.

There are numerous other cases where additional constraints restrict grant privileges on various
object types. These details are beyond the scope of this report and are not discussed.

The data dictionary table that is affected, or can be used to determine whether a particular
GRANT operation is successful, is DBA_TAB_PRIVS, as reflected in Table 4. This data
dictionary view lists all grant privilege details on objects in the database. It has attributes that
indicate the GRANTEE (user to whom access was granted), object owner, name of the object,
GRANTOR (user who performed the grant operation), privilege, and an indication of whether the
privilege can be granted to another user.

As shown in Figure 50, the behavioral requirements are derived from the requirement text in the
Oracle Security Target, like Grant Object Privilege, described in Section 12.3.1. The
requirements are defined in terms of the model variables that represent the interface, which is
defined in terms of the data dictionary and SQL commands. The interfaces are declared as
model variables using the modeling tool. The mapping for the model variable defines how to

12. Database Security

85

affect that variable within the test execution environment. For example, a user or script must
issue a GRANT SQL command to affect an object’s privilege.

Figure 50. Detailed Process Flow

As shown in Figure 50, the model is input to the test vector generator, and the resulting test
vectors are combined with the object mappings and test driver schema to produce a Java test
driver. The executing test driver communicates with the Oracle database through a JDBC
connection to carry out the tests. The test driver captures the actual outputs for each test during
test execution and stores them for post processing. Then, a cross-comparison tool compares
the expected outputs against the actual outputs and produces a test results log that indicates
the pass/fail status for each test vector.

12.3.1 MODELING SECURITY PROPERTIES

Each security property is modeled as a Boolean object in a manner similar to Grant Object
Privilege as shown in Figure 51. The conditions associated with the TRUE output, or the
positive sense for the model, make up the valid set of conditions required for Grant Object
Privilege. Each test case for the TRUE case should result in valid actions with respect to the
security relationships established for that case. The FALSE cases are negative conditions,
which establish a realistic database relationship, but the corresponding test attempts to execute
invalid operations, from a security perspective, should be denied as an invalid security
response. Some operations cause failures because the database responds with an error
message when improper or unauthorized actions are requested. If any of the FALSE cases
does not respond with some type of invalid operation, then the security property has been
violated. This general approach is used to model each security requirement to ensure that
proper security exists for authorized actions, while unauthorized actions are not permitted.

Test
Results

Verification Model

Test Vector
Generator

Test Driver
Generator

Expected Outputs

Actual
Outputs

Cross-
Comparison

Data Dictionary
and

SQL Commands

Interfaces
Data Dictionary

and
SQL Commands

Interfaces

Object
Mapping

Test
Driver

Schema

JDBC

Oracle8 Security
Target

Database
System

Oracle8 Reference
Oracle8 SQL Reference

Behavior

Java
Environment

12. Database Security

86

Row 1 of the model for Grant Object Privilege, shown in Figure 51, with the assignment TRUE,
describes the conditions when the Grant Object Privilege should be permitted. For example,
when the grantee and the grantor are valid database users, then an object privilege should be
granted if the grantor owns the object or has been granted object privileges with the GRANT
OPTION. Also, the model defines additional conditions where the grantee (reflected by
granteeType) can be a user, PUBLIC, or role. The term variable tcUserObjectPrivileges
references another condition table that enumerates the set of objectPrivileges (e.g., ALTER,
DELETE, INDEX, and INSERT) that are valid and should be tested. If the granteeType is a role,
then the term tcRoleObjectPrivileges defines a subset of the valid ObjectPrivileges that apply to
roles.

Figure 51. Example Model for Grant Object Privilege

12.3.2 TEST VECTORS

Modeling and test vector generation are typically performed iteratively as the model is
developed. The TTM modeling tool provides a number of checks on the model to ensure that
individual tables are consistent and complete. The TAF model translator and T-VEC tools
perform additional checks that identify cross-table inconsistencies and contradictions. These
model analysis capabilities support refining the model by identifying and correcting model
defects.

The Grant Object Privilege requirement includes 88 requirement threads to cover the
combinations of object privileges and roles. The test vector generator attempts to determine two
test vectors for each requirement thread based on a test selection strategy derived from the
concept of domain testing theory. Table 5 shows a tabular representation of the 176 test vectors
that have been compressed into 132 test cases. If one ore more test vectors have the same
input and output values, they are compressed into a single test case. The test vectors include
seven input variables. The test values shown in Table 5 reflect how the test generator
systematically selects low-bound and high-bound test points at the domain boundaries. The

Grant Object Privilege
tcUserObjectPrivileges

tcRoleObjectPrivileges

12. Database Security

87

input values, ranges, and constraints (e.g., relational operators) of the specification define the
domain boundaries. For example, vector 1, grantor = 1, grantee = 2, is based on low-bound
values of the data type range of userIDType. The other inputs such as granteeType toggle
between the different values of user, PUBLIC, and role, as do the other inputs such as
objectPrivilege.

Table 5. Test Vectors for Grant Object Privilege

Tes
t #

Vector
#’s _output grante

e
granteeTyp

e
granto

r
grantorHasPrivileg

e
grantorOwnsObjec

t
hasGrantOptio

n objectPrivilege

1 4.7 TRUE=1 2 user=0 1 TRUE=1 TRUE=1 TRUE=1 ALTER=0

2 2 TRUE=1 2 user=0 1 FALSE=0 TRUE=1 FALSE=0 ALTER=0

3 3.9 TRUE=1 2 PUBLIC=2 1 TRUE=1 TRUE=1 TRUE=1 ALTER=0

4 4 TRUE=1 2 PUBLIC=2 1 FALSE=0 TRUE=1 FALSE=0 ALTER=0

5 5.11 TRUE=1 2 role=1 1 TRUE=1 TRUE=1 TRUE=1 ALTER=0

6 6 TRUE=1 2 role=1 1 FALSE=0 TRUE=1 FALSE=0 ALTER=0

7 8 TRUE=1 2 user=0 1 TRUE=1 FALSE=0 TRUE=1 ALTER=0

8 10 TRUE=1 2 PUBLIC=2 1 TRUE=1 FALSE=0 TRUE=1 ALTER=0

9 12 TRUE=1 2 role=1 1 TRUE=1 FALSE=0 TRUE=1 ALTER=0

10 13.19 TRUE=1 2 user=0 1 TRUE=1 TRUE=1 TRUE=1 DELETE=1

126 167 FALSE=
0 2 PUBLIC=2 1 TRUE=1 FALSE=0 FALSE=0 INDEX=2

127 169 FALSE=
0 2 user=0 1 FALSE=0 FALSE=0 TRUE=1 REFERENCES=

4

128 170.17
4

FALSE=
0 2 user=0 1 FALSE=0 FALSE=0 FALSE=0 REFERENCES=

4

129 171 FALSE=
0 2 PUBLIC=2 1 FALSE=0 FALSE=0 TRUE=0 REFERENCES=

4

130 172.17
6

FALSE=
0 2 PUBLIC=2 1 FALSE=0 FALSE=0 FALSE=0 REFERENCES=

4

131 173 FALSE=
0 2 user=0 1 TRUE=1 FALSE=0 FALSE=0 REFERENCES=

4

132 175 FALSE=
0 2 PUBLIC=2 1 TRUE=1 FALSE=0 FALSE=0 REFERENCES=

4

The complete model resulted in 382 test vectors for 234 DCPs.

12.4 KEY GUIDELINES

This section summarizes several key guidelines derived from this case study, including:

• Create data dynamically at test time

• Use interface-driven analysis and modeling

• Model positive and negative cases

• Use test vector compression to reduce redundant test cases

12. Database Security

88

12.4.1 CREATING A TEST-TIME DATABASE

One of the challenges in testing large applications, especially those with databases, involves the
creation of test data. Often “gold” databases are created, and test cases must be defined in
terms of the information stored within those databases. Creating the “gold” data can be costly,
but to create test cases for the data within the database, those values must be analyzed in order
to create relevant test cases. This adds another level of complexity to the task of security
testing. If the “gold” data changes, then existing test cases often become invalid, and new tests
must be constructed.

One key advantage of model-based testing is that the test case data is created dynamically at
test time. The test driver for this application dynamically creates and deletes database
information in the form of users, roles, database tables, and values. This allows automated test
execution without manual assistance. There is upfront effort that must be performed once,
similar to the creation of a gold database. However, this initial effort eliminates the need to
maintain the gold database, and the user does not need to analyze the gold database before
creating test cases. The models are constructed in a way that is independent of any specific
populated database.

For any Oracle database, some specific database conditions must be established prior to the
execution of the tests. For example, a database administrator must install the database, and the
Oracle database test execution requires the TEMPORARY tablespace to be available during
execution. Once this is established, the common sequences of tests are produced from model.
The following simplified example, taken from a log file for the grant role command, illustrates the
sequence of commands to log in as a user and initialize the data by dropping roles, creating
tables, and inserting data. The description follows the example:

• Logon User -> SYSTEM
• Create Users

1. Executed SQL-> CREATE USER "USER1" IDENTIFIED BY "USER1" DEFAULT
TABLESPACE "TABLESPACE" QUOTA UNLIMITED ON "TABLESPACE" TEMPORARY
TABLESPACE "TABLESPACE" PROFILE DEFAULT ACCOUNT UNLOCK

2. Executed SQL-> GRANT CONNECT TO USER1
3. Executed SQL-> CREATE USER "USER2" IDENTIFIED BY "USER2" DEFAULT

TABLESPACE "TABLESPACE" QUOTA UNLIMITED ON "TABLESPACE" TEMPORARY
TABLESPACE "TABLESPACE" PROFILE DEFAULT ACCOUNT UNLOCK

4. Executed SQL-> GRANT CONNECT TO USER2
5. Executed SQL-> CREATE USER "USER3" IDENTIFIED BY "USER3" DEFAULT

TABLESPACE "TABLESPACE" QUOTA UNLIMITED ON "TABLESPACE" TEMPORARY
TABLESPACE "TABLESPACE" PROFILE DEFAULT ACCOUNT UNLOCK

6. Executed SQL-> GRANT CONNECT TO USER3
7. Executed SQL-> CREATE USER "USER4" IDENTIFIED BY "USER4" DEFAULT

TABLESPACE "TABLESPACE" QUOTA UNLIMITED ON "TABLESPACE" TEMPORARY
TABLESPACE "TABLESPACE" PROFILE DEFAULT ACCOUNT UNLOCK

8. Executed SQL-> GRANT CONNECT TO USER4
• Create Role

9. Executed SQL-> CREATE ROLE ROLETEST
10. Executed SQL-> GRANT ROLETEST TO USER1
11. Executed SQL-> SELECT GRANTED_ROLE FROM SYS.DBA_ROLE_PRIVS where GRANTEE

= 'USER1' and granted_role = 'ROLETEST'

• test:1 Results:TRUE
12. Executed SQL-> SELECT USERNAME from sys.ALL_USERS where USERNAME like

'USER%'

12. Database Security

89

13. Executed SQL-> DROP USER USER1 CASCADE
14. Executed SQL-> DROP USER USER2 CASCADE
15. Executed SQL-> DROP USER USER3 CASCADE
16. Executed SQL-> DROP USER USER4 CASCADE
17. Executed SQL-> SELECT unique profile FROM SYS.DBA_PROFILES where profile

like 'PROFILE%'
18. Executed SQL-> SELECT role FROM SYS.DBA_ROLES where role like 'ROLE%'
19. Executed SQL-> DROP ROLE ROLETEST
20. Executed SQL-> SELECT OWNER, TABLE_NAME from sys.ALL_TABLES where

TABLE_NAME like 'TABLE%'

• On lines 1 through 8, SYSTEM user creates users (1 to 4) and grants connection
privileges.

• On lines 9 and 10, SYSTEM creates role and grants the role to user1.
• ON line 11, SYSTEM extracts database role privileges (DBA_ROLE_PRIVS) from the

system data dictionary.
• On lines 12 through 20 SYSTEM performs cleanup operations.

The test sequence just shown was extracted from a log file that is produced as part of the test
driver infrastructure. The test driver is based on the JDBC API, using Java that makes SQL calls
to the database. The test driver generation support capabilities are provided by a Java
infrastructure to do the following:

• Retrieve global test configuration settings that can be configured to direct the test driver
mechanisms to use user-specified options such as log directory, output file directory,
system user, and password

• Retrieve test vector parameters during test execution

• Log the test operation (shown in the previous example)

• Create a test output file

• Establish an Oracle database connection and SQL execution through JDBC

• Specify an interface to which each test must conform

• Provide global constants

• Provide a framework for test execution

The combination of dynamic test data creation and test infrastructure provides a robust
environment to fully automate an ever-expanding set of tests as the model evolves.

12.4.2 INTERFACE-DRIVEN MODELING

Interface-driven analysis and the associated modeling are important to understand potentially
common interface objects or variables as well as dependencies in the interface operations that
are used to put a system into a test state. As illustrated in Section 12.4.1, the GRANT
commands depend on other commands such as CREATE, INSERT, and SELECT. Table 6
provides a summary resulting from interface analysis for several requirements. Each row
provides a brief summary of a requirement, the related data dictionary views, associated SQL

12. Database Security

90

commands that are primarily used to affect the operation, and related commands that are
referred to as dependent commands.

For example, the Grant Role Privilege command, like the Grant Object Privilege command,
describes the requirements for granting and revoking role privileges. The primary data dictionary
table from which the results of the granted role privilege can be retrieved is the
DBA_ROLE_PRIVS (database administrator role privileges). The SQL commands that are used
to grant/revoke privileges are GRANT and REVOKE, and the related SQL commands include
CREATE, INSERT, SELECT, and others. The operations and test driver commands required to
support Grant Role Privilege overlap Grant Object Privilege. More importantly, much of the
functionality for other requirements, such as DISABLE and ENABLE roles, subsume many of
the tested requirements developed for GRANT and REVOKE roles.

Table 6. Detailed Security Specification Analysis

Requirement
Summary Data Dictionary Items

SQL
Command

Dependant
Command

Disable roles
DBA_ROLE_PRIVS
SESSION_ROLES SET ROLE

GRANT,
ALTER,

Enable roles
DBA_ROLE_PRIVS
SESSION_ROLES SET ROLE GRANT

Grant object
privileges DBA_TAB_PRIVS GRANT

CREATE,
INSERT,
SELECT

Grant/revoke role
privileges DBA_ROLE_PRIVS

GRANT/
REVOKE

CREATE,
INSERT,
SELECT

Grant system
privileges DBA_SYS_PRIVS GRANT

CREATE,
INSERT,
SELECT

Revoke privileges DBA_TAB_PRIVS REVOKE GRANT
Every object
uniquely
identified, even if
deleted ALL_OBJECTS

CREATE,
INSERT,
SELECT,
DELETE

Understanding the dependencies allows actual interfaces to be associated with modeled
variables. These modeled variables are then related to common object mappings. Once an
object mapping is created for an interface such as the CREATE SQL command, it can be
reused, which saves time and effort and minimizes the cost.

12.4.3 MODELING POSITIVE AND NEGATIVE CONDITIONS

The typical, and manual test case developed usually results in positive test cases that are
similar to those represented by the TRUE assignments in Figure 51. The modeling process
helps make the negative case more obvious. The FALSE cases, shown in Figure 51, are
negative conditions, which establish realistic database relationships, but the corresponding test
attempts to execute invalid operations, from a security perspective, and should be denied as an
invalid security response. These are critical test cases from a security perspective, but this type
of negative case is the same type as the model that found the MPL bug as discussed in Section
4.4.

12. Database Security

91

12.5 RESULTS

This case study summarizes the general process for modeling a security requirement and the
use of generated tests derived from the model to support automated testing of the security
properties of an Oracle database. Modeling functional security properties is conceptually similar
to modeling any other type of functional requirement. Mapping the generated tests to the
interfaces of the database allows users to systematically exercise the various database
configurations for each of the security properties.

The details of the models, test vectors, and test drivers are beyond the scope of this report. In
addition, to understand the test driver support requires some understanding of Java, SQL, and
operational details of an Oracle database. Additional details, including the security requirement
models, test vectors, object mappings, test driver schema, test drivers, and instructions for
installing and executing the test drivers against an Oracle database, are available for download
from the TAF Reports website [http://www.software.org/pub/taf/Reports.html].

This case study provides evidence that model-based testing of functional security requirements
and automated test executions are feasible and cost-effective. Once a model is created from a
specification, it can evolve with the specification and be used to systematically reverify a system
after every new release with significantly reduced costs.

In addition, the Java-based test infrastructure that was developed for this application was ported
forward and used in the smart card application described in Section 13.

Security functional testing is a costly activity, and the continuous stream of product variations
and releases add to the cost of reverification. As pointed out in other case studies, regression
testing through model-based testing can reduce the cost and time by 50% or more over manual
regression testing. In addition, organizations that are faced with manual regression testing, often
choose not to be complete in the retesting process, but for mission-critical systems that rely on
security, choosing to neglect some tests can be a risk.

12. Database Security

92

This page intentionally left blank

93

13. SMART CARD INTEROPERABILITY

13.1 PROBLEM

Smart cards are being used to provide security for many types of applications. With an
estimated market of 3.3 billion in 2005, their usefulness is based on their intrinsic portability and
security. Smart cards have the ability to provide far more efficient, secure, and hard-to forge
credentials than are currently used in the U.S. Smart cards can provide efficient, secure, and
portable storage for medical, financial, and other personal information. However, there are many
different manufactures of smart cards, and most cards are not interoperable.

A typical configuration for a smart card system consists of a host computer with one or more
smart card readers attached to hardware communications ports. Smart cards can be inserted
into the readers, and software running on the host computer communicates with these cards
using a protocol defined by ISO 7816-4 [ISO 1995b] and ISO 7816-8 [ISO 1995a]. The ISO
standard smart card communications protocol defines Application Protocol Data Units (APDUs)
that are exchanged between smart cards and host computers.

Client applications traditionally have been designed to communicate with ISO smart cards using
the APDU protocol through low-level software drivers that provide an APDU transport
mechanism between the client application and a smart card. Smart card families can implement
the APDU protocol in a variety of ways, so client applications must have intimate knowledge of
the APDU set of the smart card with which they are communicating. Generally, this is
accomplished by programming a client application to work with a specific card because it would
not be practical to design a client application to accommodate the different APDU sets of a large
number of smart card families.

The tight coupling between client applications and smart card APDU sets has several
drawbacks. Application programmers must be thoroughly familiar with smart card technology
and the complex APDU protocol. If the card application is hard-coded and becomes
commercially unavailable, programmers must redesign the application to use different cards.
Customers also have less freedom to select different smart card products because their
applications will work only with one or a small number of similar cards. This GSC-IS provides
solutions to a number of the interoperability challenges associated with smart card technology.

NIST initiated the Smart Card Interoperability Program to provide standards and tests to
accelerate the use of this technology. This case study describes the approach and results of a
model-based development and test generation effort that created models for the GSC-IS. It also
describes the generated tests and test infrastructure that have been used to test the
conformance of the Java language binding of the Basic Services Interface of the GSC-IS.

13. Smart Card Interoperability

94

13.2 APPROACH

13.2.1 ARCHITECTURAL OVERVIEW

Figure 52 represents the conceptual architecture and behavior covered in the GSC-IS. The two
key elements that require models, tests, and supporting test infrastructure are defined as the
Basic Service Interface (BSI) and Virtual Card Edge Interface (VCEI), also referred to as the
Service Provider Software (SPS).

The VCEI includes two sets of APDU commands: (1) an GSC-IS APDU set for use in
conformant file system cards, and (2) a set of virtual machine (VM) APDUs for use in VM cards.
The card edge also consists of the Card Capability Container (CCC), which is a file located on
each conformant smart card, and the GSC-IS APDU mapping mechanism.

The GSC-IS ISO-conformant APDU set can be implemented directly by conformant cards (such
as in a conformant file system card or as a VM card applet). It is expected that some file system
smart cards may use native APDU instruction sets that differ from the GSC-IS APDU set. In
those cases, an SPS must modify the ADPU set so that it conforms to the smart card’s native
APDU set.

This section discusses the models used to specify and test the BSI interface methods only (i.e.,
not the VCEI functions). In addition, it discusses the approach used to construct test middleware
for executing the functions against a simulator of the smart card.

Figure 52. GSC-IS Architectural Model

13.2.2 ELEMENTS OF SYSTEM AND TEST INFRASTRUCTURE

The following elements, shown in Figure 53, were constructed to support the modeling and test
analysis effort. A model of the GSC-IS, derived to characterize the functionality of the BSI and
VCEI, was created using the TTM, based on the SCR method. The model was translated, and

Client Application

Basic Services Interface (BSI) Extended Services Interface

Virtual Card Edge Interface (VCEI)

Card Reader Driver

Card Reader

Smart Card Data Model Card Capabilities ContainerSmart Card Data Model Card Capabilities Container

Host
PC

Smart Card
Reader

Smart Card

Service
Provider
Software

(SPS)

13. Smart Card Interoperability

95

test vectors and test drivers were generated using the T-VEC test generation system for both
the Java and C-language bindings. The Smart Card Conformance Tester is used to define
configuration information and initiate executing generated tests. The Smart Card Model Maker
creates data model information for a Smart Card Simulator. Information such as security
information must be correlated between the configuration file and the defined smart card model.
The Smart Card Conformance Tester executes the generated test drivers causing interaction
with an implementation of the GSC-IS.

Figure 53. Elements Created to Support Task Development

The simulator implementation of the Environment Control Interface (ECI) interacts with the
Smart Card Reader Simulator and Smart Card Simulator to support functions such as inserting
and removing cards and attaching card readers. During test execution, the default
implementation of the ECI prompts for the following:

• Card reader attachment

• Card insertion

• Card removal

13.3 IMPLEMENTATION

As shown in Figure 54, the testing of the GSC-IS involves:

• Building an SCR model specification for the GSC-IS using TTM

• Translating the TTM model into T-VEC specifications

• Generating the test vectors from the T-VEC specifications

13. Smart Card Interoperability

96

• Building a test driver middleware to execute the test vectors against an implementation
of the GSC-IS

• Executing the test driver

• Evaluating test results and producing a test results report

Figure 54. GSC-IS Smart Card Modeling Process Overview

The recommended process involves analyzing the interfaces (inputs and outputs), and for each
output, working backward from the required outputs to identify the conditions, events, and
modes that define how each output is produced. For the GSC-IS, all operations are handled
through the BSI method calls. Each method has a set of return codes that are output to the
client application. Some operations cause data resident on the smart card to be created,
deleted, or updated. Therefore, the categories of model outputs include the following:

• BSI Return Codes. There are 23 condition tables, one for each of the BSI methods.

• No Card Services Outcomes. There are 12 condition tables. The
BSI_NO_CARDSERVICE error codes are returned when the inserted card does not
support the services to complete (or possibly never allow) a successful GSC-IS BSI
method call. Methods such as gscBsiPkiCompute, gscSkiInternalAuthenticate, and
gscBsiGcDataCreate can return this error. This can occur if a card does not support a
VCEI call.

• No Service Provider Software Outcomes. Smart cards are not required to support
transactions. There are two condition tables that deal with the GSC-IS transaction
methods. The BSI_NO_SPSSERVICE return codes are returned by the

Test Driver

mapping

schema

Test Driver

mapping

schema

Government Smart Card
Interoperability Specification

T-VEC Tabular Modeler

Test Vectors T-VEC
Test Driver
Generator

Interfaces
Data Types
Variables
Constants

Behavior
Conditions

Events
State machines

Functions

+

Java, C language bindings

Modeler Role

T-VEC Test Vector Generator
Generate test vectors

to automate test case design

Smart Card
Conformance Tester

13. Smart Card Interoperability

97

gscBsiUtilBeginTransaction and gscBsiUtilEndTransaction calls when the SPS does not
provide transaction handling.

• Validation of Side-Effects to BSI Method Sequence Calls. There are 14 condition
tables that deal with verification of data that is operated on within the smart card or
returned to the client application.

• Bad Card Outcomes. There is one condition table that deals with a bad card outcome.
These test drivers execute the SPS against a card that does not support the GSC-IS.

The GSC-IS specification presents each BSI method specification in a form similar to the
example shown in the textbox insert. To perform operations on a smart card, an application
must make a sequence of BSI method calls as represented in Figure 55. For example, starting
from an initial state, an application must use the following sequence of calls to transition through
the various states before it can operate on data stored within a smart card:

• gcsBsiUtilConnect

• gcsBsiGetContainerProperties (optionally a card also may be involved in multiple
transactions)

• gcsBsiUtilAcquireContext

• gcsBsiGcReadTagList

• gcsBsiGcReadValue or gcsBsiGcUpdateValue

• gcsBsiGcDataCreate or gcsBsiGcDataDelete

At any state, it is also possible for the card to be removed from a card reader, resulting in a
disconnect.

2

BSI_UNKNOWN_ERROR

4.5.4 gscBsiUtilConnect()

Purpose: Establish a logical connection with the smart card in a specified reader.
BSI_TIMEOUT_ERROR will be returned if a connection cannot be established
within a specified time. The timeout value is implementation dependent.

Prototype: unsigned long gscBsiUtilAcquireContext(
unsigned long gscBsiUtilConnect(
IN string readerName,
OUT unsigned long hCard
);

Parameters: hCard: Card connection handle

readerName: Name of the reader that the smart card is inserted into. If this
field is a NULL pointer, the SPS shall attempt to connect to the
smart card in the first available reader, as returned by a call to
the BSI’s function gscBsiUtilGetReaderList(). The reader name
string shall be stored as ASCII encoded String. (See Section
4.2)

Return Codes: BSI_OK
BSI_BAD_PARAM
BSI_UNKNOWN_READER
BSI_CARD_ABSENT

13. Smart Card Interoperability

98

Figure 55. Partial State Representation of BSI

Although Figure 55 looks like a state transition diagram, it is not possible to put a BSI
implementation into a particular state. It is necessary to make an appropriate sequence of BSI
method calls to transition the implementation to various states. However, the conditions required
of the inputs to transition to the states for the various sequences are common. Therefore, these
common conditions are modeled as SCR terms that can be reused by other condition table
outputs.

A condition table is created and named the same as the method name for each GSC-IS output.
Similarly, the term related to the BSI method associated with the output is prefixed with a “tm”
followed by the name of the BSI method. For example, the model shown in Figure 56 reference
the term table table tmGscBsiUtilConnect for each of the three testable return codes. Types are
defined for each input/output that is not represented as a true/false value. tBsiReturnCodes is
an example of a type and represents an enumeration of all the GSC-IS return codes (e.g.,
BSI_OK, BSI_UNKNOWN_READER).

Init Connected Disconnected

InTransition

gcsBsiUtilConnect

~gcsBsiUtilConnect

gcsBsiUtilBeginTransaction

gcsBsiUtilEndTransaction

~gcsBsiUtilBeginTransaction
~gcsBsiGetContainerProperties

gcsBsiGetContainerProperties

Context
Acquired

gcsBsiUtilAcquireContext

ValidTag ValidValue OperatingOn
Data

gcsBsiGcReadTagList

gcsBsiGcReadValue
gcsBsiGcUpdateValue

gcsBsiGcDataCreate
gcsBsiGcDataDelete

~gcsBsiGcDataCreate
~gcsBsiGcDataDelete

HasContainer
Properties

~gcsBsiGcReadValue
~gcsBsiGcUpdateValue

~gcsBsiUtilAcquireContext

~gcsBsiGcReadTagList

13. Smart Card Interoperability

99

Figure 56. Condition Table for gscBsiUtilConnect

The term table tmGscBsiUtilConnect shown in Figure 57 characterizes the inputs that are
required for each of the return code values. For example, the return code value should be:

BSI_OK when

 tmClean

AND (iReaderName = READER_VALID
 OR iReaderName = NULL)
AND (iCardInserted)
AND iCardGSCISsupport
AND iGscBsiUtilConnectReturnType = NO_MAP

The term tmClean maps to test driver control for initializing and putting the client (i.e., the
conformance tester in this case) into a valid starting state. In addition, this expression of the
term models the situation where the reader name is valid or null, and a card supporting the
GSC-IS is inserted into the reader. If there is a valid card reader and card ready, and there is
not a time out or an unknown error, the method should return BSI_OK and then disconnect. In
addition, various error conditions often are established to represent an input to the subsystem.
This is done because part of the model must represent elements of the test environment, such
as the availability of a card, or a card in or not in the reader. All external inputs needed to set up
a test also are included in the test conditions for a test. This allows each test vector to define a
mapping to the test environment in which it should be executed. In testing a GSC-IS
implementation, these external inputs are used to connect readers, initialize cards, and insert
cards.

13. Smart Card Interoperability

100

Figure 57. Condition Table for tmGscBsiUtilConnect

Another example that better illustrates the reuse of the terms is gscBsiPkiGetCertificate. This
method has return code outputs, a No Card Service output, and returns a buffer containing the
Public Key Infrastructure (PKI) certificate. Figure 58 provides a partial representation of the
dependency structure of the modeled requirements for the outputs and some of terms. For
example, there are three condition tables related to the different outputs:
gscBsiPkiGetCertificate, noCardServicePkiGetCertificate, and validationPkiGetCertificate.
These three tables depend on a common term tmGscBsiPkiGetCertificate, and this term
depends on tmGscBsiUtilAcquireContext, which depends on other terms that descend from
tmGscBsiGetCryptoProperties and tmGscBsiGcGetContainerProperties. shows the condition
table for gscBsiPkiGetCertificate. The more interesting specification is defined for the term
tmGscBsiPkiGetCertificate shown in the text box.

13. Smart Card Interoperability

101

Figure 58. Dependency for gscBsiPkiGetCertificate Outputs

1

4.5.4 gscBsiPkiGetCertificate()

Purpose: Reads the certificate from the smart card

Prototype: unsigned long gscBsiPkiGetCertificate(
IN unsigned long hCard,
IN string AID,
INOUT sequence<byte> Certificate
);

Parameters: hCard: Card connection handle

AID: PKI provider module Application Identifiers (AID) value. The parameter
shall be in ASCII hexadecimal format.

certificate: Buffer containing the certificate

Return Codes: BSI_OK
BSI_BAD_HANDLE
BSI_BAD_AID
BSI_CARD_REMOVED
BSI_SC_LOCKED
BSI_NO_CARDSERVICE
BSI_ACCESS_DENIED
BSI_IO_ERROR
BSI_INSUFFICIENT_BUFFER

13. Smart Card Interoperability

102

Figure 59. Condition Table for gscBsiPkiGetCertificate

Figure 60. Condition Table for tmGscBsiPkiGetCertificate

Models that require a connection handle to the card are defined using the tmGscBsiUtilConnect
term or a term that references tmGscBsiUtilConnect because this will use the gscBsiUtilConnect

13. Smart Card Interoperability

103

method to start a connection to a smart card. The model for tmGscBsiUtilAquireContext defines
the condition for each return code in a manner similar to tmGscBsiUtilConnect and is defined in
terms of several models as shown in Figure 61. Consider the case for BSI_OK, which is
combined with terminal authentication (TERMINAL_AUTH). This scenario happens when either
the container properties or the cryptographic properties have been retrieved successfully
(tmGscBsiGcGetContainerProperties or tmGscBsiGetCryptoProperties). A successful reference
to either tmGscBsiGcGetContainerProperties or tmGscBsiGetCryptoProperties requires a
successful reference to tmGscBsiUtilConnect.

In addition, the following conditions must also hold for tmGscBsiUtilAquireContext to return
OK_OR_TERMINAL_AUTH:

• An external transaction is not in progress (NOT iGscBsiUtilAcquireContextSCLocked).

• The handle to the card must be good (NOT iGscBsiUtilAcquireContextBadHandle).

• The Access Control Rules (ACRs) specified in the Authenticator are available (NOT
iACRNotAvailable).

• The ACRs specified in the Authenticator are correct (NOT iAccessDenied).

• The card has not been removed (NOT iGscBsiUtilAcquireContextCardRemoved).

• The pin has not been blocked (NOT iPinBlocked).

Each different output for the model tmGscBsiUtilAquireContext defines different conditions on
the inputs or terms in an attempt to define the requirements to cover all the return codes for
each method.

Figure 61. Model for tmGscBsiUtilAcquireContext

13. Smart Card Interoperability

104

13.3.1 SMART CARD MIDDLEWARE

A smart card middleware has been developed for the NIST program to support automated test
execution. For each input defined in the model (e.g., iReaderName, iCardInserted), an object
mapping must be defined to cause this input to be set. An object mapping specifies the
relationship between model entities and implementation interfaces that are used for sending and
receiving commands from the Smart Card middleware and the card itself. As shown in Figure
62, the test middleware architecture enables generated test vectors to be injected into the smart
card middleware/on-card implementation for conformance testing to GSC-IS. It controls setup,
execution, and cleanup after each test. In addition, it provides other logging and reporting
capabilities that are important for fully automated test execution and failure analysis.

Figure 62. Smart Card Middleware for Automated Test Execution

A GSC-IS implementation must interact with a card reader driver, a smart card reader, and a
smart card. To test a GSC-IS implementation, the setup of the smart card must be modified by
the test driver script for each test cycle. Operations such as attaching and detaching readers
and setting the card capabilities cannot be performed through the GSC-IS. The ECI is used to

Loop through all
test vectors

No
More Test Vectors

GSCIS Test
Implementation
extends Test

Impl
Smart Card Reader Smart Card Car

d Commands

Start Test
Runne
r Java Application

Get Next Test
Vector

Configuration
File

Location of Test Classes
Log Files and any other configuration needed
by the test implementations or Test Runner

Application
(Currently GSCISTestConfig.txt) Select

Subsystem to
Test from Test

GUI

Get Test
Vectors

Set Up Test

Run Test

Clean Up Test

Load Test
Implementation

Save Result in
EOT file

GSCIS

Connect

Disconnect

Environment
Control

Interface (ECI)

Setup Readers and Cards

Reset Test
Environment

Configuration

Reade
r Commands

Attach/Detach
Reade
r

Insert/Remove
Car
d Setup Card

Capabilities

Set Up Test

Execute Test

Clean Up Test

Get Test
Vectors

13. Smart Card Interoperability

105

provide interaction with the external environment, connect card readers, and insert/remove
cards from the readers. The ECI is implemented in two ways:

• Manual intervention

• Software-controlled automation of the test environment

A manual intervention version of the ECI prompts a user to perform operations at appropriate
points in a test cycle, such as:

• Reader attachment

• Smart card setup

• Smart card insertion/removal

This manual intervention supports testing hardware implementations of the GSC-IS. This
approach, however, has the potential for introducing human error into the test results.
Therefore, the desired approach is to use software-controlled automation. A manual intervention
version of the ECI is implemented and can be used when testing any hardware implementation.
Software-controlled automation of the test environment requires that a custom implementation
of the ECI be built. A custom version of the ECI interacts with the simulator software
implementations of the card reader and smart card. The simulator ECI implementation does not
require the manual intervention required by the default ECI implementation designed for testing
hardware.

13.4 KEY GUIDELINES

13.4.1 TEST INFRASTRUCTURE

Development a test infrastructure (referred to by NIST as a test middleware) that establishes a
common basis for test injects, ensures proper initialization and controls, and fosters more robust
approaches to support test automation. Use the test infrastructure to support common reporting,
logging, and measurements. In working on other programs with companies, a test infrastructure
promotes design for testability, which is essential for test automation. For programs that are
based on product families or will evolve through many versions, a test infrastructure can be
cost-effective, because it can be reused.

13.4.2 MODEL DEPENDENCIES AND TEST SEQUENCING

Analyze and model based on dependency relationships of component functions to promote
reuse of common models and associated test sequencings. For example, the conceptual state
machine shown in Figure 55, with a partial representation in Figure 63 relates the sequence of
BSI method calls to achieve the Context Acquired state that is associated with the
gcsBsiUtilAcquireContext BSI method call. The term tmGscBsiGcGetContainerProperties is
defined as a precondition in the condition table. Its test driver mapping establishes the set of
calls to get to the state Has Container Properties. Therefore, the dependencies in the term
relationships directly support the sequence of calls to the smart card to transition an application

13. Smart Card Interoperability

106

to the various states. In addition define the object mappings in one place and reuse them for
each related model’s tests.

Figure 63. Partial State Machine for Context Acquired

13.4.3 REQUIREMENT TRACEABILITY

There are many reasons to use requirement traceability links to the model. In particular, it
permits test failures to be traced back to the requirements. In the case of the smart card
example, an independent test group provided a set of test assertions that they presumed would
be the minimal set required to cover the functionality of the specification, as shown in Figure 64.
Specifying requirements, or in this case test assertions, provides a basis for assessing the
completeness of the model. As shown in

, each assertion was linked to a modeled requirement, but there were some cases modeled that
did not have test assertion (e.g., for the assignment of BSI_ACCESS_DENIED). This case
points out that the modeling process tends to be more thorough because it captures
relationships associated with all values of the interfaces, even if they are not specified within the
documentation or test assertions.

The terms for
gcsBsiGetContainerProperties
establish the preconditions to
set up dependent BSI calls in the
test driver to cause transition
through the conceptual states for
assessing method under tests

Init Connected

InTransition

gcsBsiUtilConnect

~gcsBsiUtilConnect
gcsBsiUtilBeginTransaction

gcsBsiUtilEndTransaction

gcsBsiGetContainerProperties
Context
Acquired

gcsBsiUtilAcquireContext HasContainer
Properties

Init Connected

InTransition

gcsBsiUtilConnect

~gcsBsiUtilConnect
gcsBsiUtilBeginTransaction

gcsBsiUtilEndTransaction

gcsBsiGetContainerProperties
Context
Acquired

gcsBsiUtilAcquireContext HasContainer
Properties

13. Smart Card Interoperability

107

Figure 64. Smart Card Requirement Traceability

13.5 RESULTS

This case study describes the model-based development and test generation method used for
creating models for the BSI of the GSC-IS. The model for 23 BSI methods resulted in 306
requirement threads that have been used to produce 692 test cases, without using inlines. (See
Section 13.4] for more information on inlining.) The case study also provides a summary of the
test middleware that supports automated conformance test execution of the Java language
bindings for the BSI services. The middleware provides the environment to support a common
approach to perform all tests.

This case study illustrates a complete end-to-end use of model-based testing. Starting from a
well-defined and well-reviewed specification, models were developed. The detailed analysis that
modeling forces on the requirements process exposed anomalies that had gone undiscovered
during all the review processes for the different versions of the GSC-IS specification. The most
notable result was that the TAF team uncovered 20 significant issues and several minor issues
with version 2.1 of the GSC-IS specification. These issues were reported to NIST. The structural
nature of the modeling process supports defect identification.

The requirement traceability process is useful for tracing requirements to tests, but this case
study illustrates how incompletenesses in the requirements can be exposed. The test
infrastructure illustrates a robust and reusable mechanism to automate all the test cases, test
sequences, and test results capture, while supporting test logging and reporting.

13. Smart Card Interoperability

108

NIST was extremely pleased with the results, and this infrastructure is the basis for the latest
effort resulting from the Homeland Security Presidential Directive HSPD-12
[http://www.fas.org/irp/offdocs/nspd/hspd-12.html] that calls for new standards to be adopted
governing the interoperable use of identity credentials to allow physical and logical access to
federal government locations and systems. The Personal Identity Verification (PIV) for Federal
Employees and Contractors, Federal Information Processing Standard 201 (FIPS 201
[http://www.csrc.nist.gov/publications/fips/fips201/FIPS-201-022505.pdf]) establishes standards
for identity credentials. The Special Publication 800-73 (SP 800-73
[http://csrc.nist.gov/publications/nistpubs/800-73/SP800-73-Final.pdf]) specifies interface
requirements for retrieving and using data from the PIV Card and is a companion document to
FIPS 201. The approach used for modeling and testing the smart cards is being applied to the
PIV specification and associated card implementations.

109

14. MEDICAL DEVICE PRODUCT LINE

The information presented in this section is generic. The TAF team examined several different
companies’ technical specifications from Internet information and patent summaries to ensure
the following information is presented in a product-neutral form. Several companies have similar
products with conceptually similar processes as discussed in this section.

14.1 PROBLEM

Like many companies that build high-assurance systems for life-critical applications, zero
defects is a requirement. The cost of the V&V efforts for these companies often exceed 50% of
the total effort, and the company discussed in this case study did confirm that its testing cost
was significantly higher than 50% of the life-cycle cost. In addition, the complexity of its systems
continues to increase, along with greater scrutiny from the certification authorities such as the
FDA, and competitive market pressure means these high-assurance requirements must be
satisfied in even shorter time periods.

This company has advanced testing facilities including simulators, emulations, breadboard and
hardware test environments, with comprehensive test analysis, measurement, tracking,
reporting, and logging capabilities. It is desirable to reduce the cost of testing, but schedule
reduction is the most critical need in order to remain competitive in the marketplace. Most
testing prior to the use of TAF has been performed using manually produced test scripts that
support fully automated test execution and results analysis. Even with this significant V&V
support, creating test cases (i.e., the test design process) and implementing those test designs
into scripting languages have become labor-intensive, time-consuming, and costly tasks. The
criticality of the systems requires them to perform comprehensive reviews of test procedures
that can be several hundred lines of code. For any small product, there can be over one
thousand test scripts required to fully verify the product.

For changes made to a device after it has been released for clinical trials or to the field,
regression testing requires that the entire test suite must be reexecuted. Often, because
complex timing requirements require test scenarios to simulate the human anatomy, test scripts
that might work for one release of a product might not work after a modification has been made
to the system. Such tests must be reassessed, corrected or re-implemented, rereviewed, and
then reexecuted. If common changes are required, such changes could require reediting of
hundreds of test scripts.

A comprehensive simulation and test infrastructure provides significant advantages. However,
the sophisticated and wide-spectrum set of APIs for controlling human simulations sometimes
provides far too many options for test designers and can lead to reduced robustness of the test

14. Medical Device Product Line

110

scripts, especially since different simulation APIs have different timing characteristics⎯that is,
the timing of one sequence of API calls can vary by a few milliseconds from another set, even
though they might achieve the same function.

Currently, receiving FDA approval is a critical and sometimes time-consuming part of product
release. If the FDA can be convinced that the TAF approach provides the verification rigor
needed for FDA certification and will allow the TAF verification results to be submitted as
justification for approval, then the company will be able to improve its ability to deliver complex
systems with FDA approval in a more cost-effective manner.

This case study discusses the TAF team’s involvement with a company over a multiyear time
period to create an engineering approach to model-based testing. The team worked with the
system engineers that develop the requirement and interface specifications, the design team
that constructs more testable system and components, the test engineering organization, the
quality assurance organization that interfaces with the FDA, and the organization that develops
and maintains that advance engineering infrastructure.

14.2 APPROACH

The effort started with a small thread of functionality and transitioned into one of the most
complex control mechanisms that is common in many devices. These successful
demonstrations lead to full-scale development of two different product lines, and involved
coordination with the design team, system engineering team that wrote the product technical
specification, test team, and the quality assurance organization involved in FDA certification and
tool qualification. The process and infrastructure was used in a fully tailored custom training
class based on one of the verified products.

The modeling process was consistent with the process picture as reflected in Figure 16. In
addition, the modeling started nearly in parallel to the design and implementation process. This
approach permitted more continuous testing during development and allowed for early analysis
of the technical specifications. This case study provides details related to organizing models to
support multiteam development and other related benefits.

Many of the devices this company develops tend to have a common data flow as conceptually
represented in Figure 65. In real time on a periodic basis, the devices usually perform some
sensing of a heart while capturing information and check that information against stored
information within the device that is usually set by a doctor. Based on the information, usually
collected and filtered over time, algorithms select options to issue a therapy, such as increasing
or decreasing a pace, or optimizing the device to preserve battery life. These devices continue
to evolve over time, and some doctors prefer different algorithms. It is common for functions
such as Check to have many different types and combination of filtering, matching, and
selection possibilities that suit different doctors’ views on patient treatments. A new combination
often is called a feature when it is presented to a doctor; however, the feature can impact many
components within a system. This case study discusses the organizational and process impacts
of developing a feature for the Check component that impacts Filter, Match, and Select.

14. Medical Device Product Line

111

Figure 65. Conceptual Components of Example Medical Device System

This case study takes a chronological perspective because the integration of the entire model-
based method impacted many different organizations within this company. For example, prior to
the engagement with the TAF team, as reflected in Figure 65, the components of the Check
function were not partitioned with well-defined interfaces; rather, the functionality was coupled,
which made testing the functionality in each subcomponent (i.e., Filter, Match, and Select) more
difficult. However, there is a verification requirement to demonstrate that every thread through a
component or subcomponent is completely tested. Tight coupling makes this requirement
difficult to achieve and demonstrate.

14.3 IMPLEMENTATION

There were four distinct phases of involvement with this company. Phase I was essentially a
short pilot project effort to demonstrate the feasibility of applying model-based testing. During
this phase, the TAF team quickly (i.e., approximately 2 hours) developed a model, mapped test
drivers to the test environment, executed a test against a project, and found a minor problem
with the memory mapping for the uploaded message from the device. These achievements
encouraged the company to progress to Phase II.

14.3.1 IMPROVED TEST INFRASTRUCTURE

Phase II was a challenging problem because the model characterized a well-defined but
arguably one of the most complex control mechanisms of the entire device. The team modeled
approximately 130 requirement threads. The modeling process helped illustrate problems and
anomalies, nothing serious, with documentation, including the technical specification and
interface specifications, which were maintained separately. However, the key issues arose
when the team created the object mappings to support automated test driver generation.

The test infrastructure was robust and used by both testers and developers. Test scripts were
written in C++ in a Microsoft development environment, and an extensive set of API services
provided numerous ways to integrate different software versions with a simulation for the heart.
The simulation services permitted program control for such things as the heart rate to ventricle
and atrial timing, but unfortunately, the API services had many overlapping functions. It was
often difficult to understand how to properly initialize the simulation for a particular subsystem of
related features; in addition, it was difficult to uncover the particular functions necessary to set
up consistent control of the simulator. These same problems plagued test engineers, especially

Filter Match Select

Sense Check Deliver

Filter Match Select

Sense Check DeliverSense Check Deliver

Well-Defined Interfaces
Supports direct

controllability and
observability for

component

Coupled Interfaces
Complicate Access to
Component and Limit

Controllability That Requires Test
Inputs to Be Provided Upstream

Key

-Well-defined Interface

- Coupled Interface

14. Medical Device Product Line

112

less experienced engineers, because there were several hundred API services to support
testing and many different requirements for initializing different test environments, for various
types of product features.

The team worked with some knowledgeable people that helped develop the test infrastructure
and simulator to successfully build test drivers for the modeled requirements. The team isolated
the best services to accomplish the task and used those to produce the generated test drivers.
More importantly, the efforts caused an initiative within the company to redesign the entire set of
API services for the user community. The developers simplified the set of APIs and reduced
them to about one quarter of the original number.

14.3.2 REQUIREMENT ANALYSIS

The success of Phase II permitted the team to move on to a new feature for an existing device,
which is referred to as Phase III. Originally, this feature was going to be included in the next-
generation device, but market pressure forced this company to include this feature in an existing
device.

The team recommended the interface-driven requirement modeling that starts early during the
requirement and design phase. This early modeling has been demonstrated to help create a
more testable design and improve the requirement and interface specifications.

This company uses a two-phased approach to the release of a technical requirement
specification. During first phase, the technical specification is under configuration control but can
be evolved, reviewed, and changed without official approval from a change control board. After
the specification has been released, a change control board must approve all changes.

Fortunately, the modeling process started from a technical specification that had not been
officially released. This was an exception to the typical testing process because testing normally
starts much later in the development process. However, during the process of modeling the
requirement specification, about 100 specification problems were uncovered. Prior to the
change control board, all these issues were discussed and resolved with the system engineers
that developed the technical specification. This intangible benefit of the model-based testing
effort saved cost and effort by uncovering these issues. Early resolution of the issues also
saved the designers time and effort in making potentially bad design choices because of issues
in the requirement specification.

14.3.3 DESIGN FOR TESTABILITY

Another issue that surfaced during Phase II was addressed during Phase III. As reflected in
Figure 65, the functionality in the existing system was tightly coupled because of numerous
historical reasons related to power consumption and memory space limitations of the device.
The interfaces between Filter, Match, and Select were not well-defined. This complicated the
testing process, requiring many tests to be initiated from higher levels in the system, such as
Check, because some of the inputs could be set upstream from the Check component. In
addition, the outputs from the function such as Match were not visible. This made systematic
and comprehensive testing of these lower-level components difficult. Normally, ensuring
coverage of the threads through the implementation of these lower-level components means

14. Medical Device Product Line

113

increased testing from the high-level components. Sometimes, the number of tests can increase
by an order of magnitude.

The team started this effort early enough that the designers were able to expose the interfaces
of both the inputs and outputs, including internal state information to increase the testability
significantly. Approximately 80% of the functionality was tested with improved interface support
provided by the design team. This approach significantly reduced the complexity of the model
and the tests, and provided greater test coverage with fewer tests to reduce time and cost. The
remaining 20% represented elements of the components that could not be changed due to
performance issues, and impacts on cost, resources, and schedule associated with retesting.

The team applied this design-for-testability philosophy to another product in Phase IV. The
Phase IV effort involved an older product that was being replaced by a new product. Again,
because of market pressure, the company decided to add a feature to an older product. The
success on the Phase III effort provided substantial evidence for repeating the effort on Phase
IV.

14.3.4 MODULAR REQUIREMENT SPECIFICATIONS

This company has some of the best technical specifications and interface documentation of any
member company; however, during the modeling process, the team identified a justified reason
for organizing the specifications in a different way. As shown in Figure 66, the company uses an
interface specification that is a separate document from the requirement specification. Although
this is oversimplified, conceptually one team member specified a model for the requirements in
Section 1.1. A second team member made the model for Section 1.2, and another made a
model for Section 1.3 of the requirement specification. The issue that emerged during the
modeling process of Section 1.4, which describes feature interaction requirements between
Filter, Match, and Select, is that many of these features described conditions that were already
defined in a model. Because these modeled requirements had gone through the review
process, and all the tests generated from these models were complete, with passing status, the
team decided decision to develop a separate model for the requirements of Section 1.4.

Figure 66. Organization of Requirement Feature

Filter Match SelectFilter Match Select

Section 1.1 Section 1.2 Section 1.3

Section 1.4

Interfaces

Requirements

14. Medical Device Product Line

114

The model-include mechanism allowed the Feature Interactions model, associated with Section
1.4, to include the Filter, Match, and Select models so that existing terms could be reused, as
shown in Figure 67. If conditions change in the future, the changes can and should be made in
a single place. Just as it is a good practice to separate the interface specification in code (e.g.,
in a .h include file for the C programming language), it is a good practice to specify component
interfaces separately. Figure 67 illustrates how common models represented interfaces
separate from the required behavior. If the interface is related to the requirements, the interface
model can be included with the model behavior. This practice is important because, if the
interface changes, the changed interface is isolated in one place. Interface models tend to
correspond with object mappings that represent the interface to the implementation. Section
14.3.6) provides more details on common object mappings and test infrastructure.

Figure 67. Models Represent Interfaces and Required Behavior

An important guideline, pointed out to the system engineers and specification team, is that the
specification of the requirements should be associated with outputs used to assess the
verification of the requirements. That means the requirement on interactions between
components may have been better specified in the appropriate sections in Sections 1.1 through
1.3 as they related to the interfaces of Filter, Match, and Select.

14.3.5 MODEL-BASED REVIEW PROCESS

Companies that develop safety-critical applications often are required to have code reviews as
well as test procedure reviews. This company’s existing process often required reviews of
hundreds of test scripts that may have hundreds of lines of code. The new process relied on
using validated TAF tools that satisfied the quality assurance organization’s criteria for proper
tool operation; this meant that the quality assurance organization believed that the tools would
produce test vectors and test drivers that were complete and correct with respect to the model
of the requirements. This permitted the review process to change.

The new process involved a review of the model by the system engineers to ensure the
completeness and correctness with respect to the requirements. In addition, all requirements
used the requirement traceability mechanism illustrated in Figure 9. The second part of the
process involved the designer/implementers, who reviewed the models and the associated test

Filter Match SelectFilter Match SelectFilter Match Select

Filter (Section 1.1) Match (Section 1.2) Select (Section 1.3)

Feature Interactions (Section 1.4)

14. Medical Device Product Line

115

vectors presented in matrix format also as illustrated in Figure 9. The review of the model for the
associated requirements that were directly traced to the requirements was much easier to
understand and verify than the test drivers for the model.

Design decisions, implemented in code, result often in undocumented, implementation-derived
requirements. These implementation-derived requirements must be tested too. An important
addition of the TAF process is that the designers were able to request a special type of model
information called a test constraint for the implementation-derived requirements. A test
constraint results in tests, in addition to the requirement-based tests, to support implementation-
derived requirements. This approach further reduces the unit testing effort typically performed
by the developer. Because tests were now being run in parallel to development, the
implementers work effort was reduced. This reduction in work, however, would not have been
possible without the designer providing additional test interfaces at the lower-level components.

The early interaction between the designers and test engineers improved the interfaces for
testability, provided continuous testing earlier to reduce unit testing by the
designers/implementers, and reduced the complexity of the testing to achieve more
comprehensive test coverage with a reduced set of model-based tests.

14.3.6 MULTITEAM MODEL AND TEST INFRASTRUCTURE

There are often significant skill and knowledge differences within an organization, and as
discussed in previous sections, the TAF team relied on knowledgeable individuals to
recommend simulation API services for scripting tests and for initializing the test environment in
order to automate test execution. These knowledgeable individuals were able to recommend
specific services to carry out the functions to control the simulation. The test infrastructure for
model-based testing can be engineered to provide significant reuse of model interfaces and
their associated object mappings by leveraging the most knowledgeable resources within a
company.

Figure 68 illustrates the two roles involved in the back-end aspects of model-based testing. This
is the process where modeled variables more closely related to the requirements must be
mapped to the physical mechanisms that are used to set inputs (i.e., inject test inputs) and get
outputs. The two roles include the Modeler and the Test Automation Architecture (who often
plays a modeling role too). In this company, there was one test automation architect for all of the
modelers supporting the Phase III and Phase IV effort. This one individual tailored and evolved
the test driver schema to operate with two completely different testing environments and
languages. The schema provided common reporting and execution mechanisms all based on
the same framework, which is shown in Figure 69. The test automation architecture also
controls the common object mappings that correspond to the common component interfaces. A
modeler that might not know as much about the details on the test environment can focus on
building the models from the requirements and then be directed modeling lead to reference
common object mappings in order to produce test drivers for all of the modeled functionality that
works with the concrete interfaces of the actual target systems or simulation.

14. Medical Device Product Line

116

Figure 68. Roles in Test Driver Development

As shown in Figure 69 a modeler must define one object mapping for each output defined in the
model. Within the object mapping, references are made to directory paths such <HOME> that
references the example path for the directory of the project (e.g., D:\TAF\course). From that
<HOME> user-defined variable, other information is referenced, such as the location of the
schema (e.g., <SCHEMA_HOME> = '<HOME>\test_driver_utilities'), which is where the test
automation architecture provides common Perl scripting utilities for reporting and logging,
common initializations, and declarations related to initializing the test environment, along with a
common schema and common mapping file. As reflected in Figure 69, the common mapping file
(i.e., common.map) includes other common information that is pertinent to all modelers, such as
messages, literals, inputs, flags, and other variables. If an interface changes for some input, it is
changed in one location (i.e., the inputs.map object mapping file), and all models that reference
that input variable have a test driver interface that uses the new access method for setting that
input variable. When such a change occurs, all test drivers can be regenerated to use this new
test interface. Ensuring object mapping information is defined in one place avoids the problem in
the current approach were every test script that references the input variable would need to be
modified manually through some type of editing process.

14. Medical Device Product Line

117

Figure 69. Test Infrastructure Organization

During both Phase III and Phase IV, the simulation environment, test infrastructure, component
interfaces, and reporting requirement continued to evolve. The test automation architect,
through updates to common object mappings, the schema, or Perl utilities, managed all these
changes in a way that was transparent to the other modelers.

14.3.7 MODEL-BASED MEASUREMENT

During the beginning of Phase IV, which was about the middle of the Phase III project, the team
recognized that they had TAF measurement information to support project measurement. See
Guidelines for Using Test Automation Framework Measures [Consortium 2004] for more
information.

The team developed a consolidated spreadsheet to track key measures that helped predict
project completion information. Figure 70 provides a perspective on the key measurement
information and how it relates to the typical TAF method of interface-driven requirements
modeling. With this approach, there are four key base measures. See Appendix 0 for more
details. System engineers are responsible for producing requirements, which results in the base
measure number of requirements. A test engineer or modeler works in parallel with developers
to refine requirements and build models to support iterative testing and development. Modeling
introduces model variables, which results in the base measure number of variables. After model
translation and processing, the model requirements are converted into DCPs, which is a base
measure related to requirements. To support test driver generation and test execution and

14. Medical Device Product Line

118

results analysis, the base measure number of object mappings is used. Object mappings relate
model variables to the implementation interfaces.

This measurement-related information helped managers and project leads with predicting
schedule duration and estimating project completion dates. Historical measurement information
can be used prior to the start of a project, but it also is important to use data derived during the
project.

Figure 70. Process View of TAF Measurement

14.3.8 CONFIGURATION CONTROL

For high-assurance systems, the certification authorities such as the FDA require all test
artifacts to be configuration controlled. One key reason is that if some problem in a particular
release occurs in the future, configuration controlled artifacts, such as test scripts, can be
reviewed to assess potential deficiencies in processes such as test procedure design, test script
initializations, or test reviews.

Companies often ask the TAF team how the process of configuration management changes
when transitioning from manual test design and execution to model-based testing. Figure 71
reflects the change in the process for this company (the actual artifacts are named differently).

14. Medical Device Product Line

119

The previous process involved four types of artifacts. One or more test requirements matrices
that captured the traceability of the requirement specification map to one or more test designs
stored as text files. A test design often includes information about decomposition of the
requirements into test requirements that were to be tested by one or more test cases. Each test
design had a one-to-one correspondence to a test script that provided the code to implement
the test case. Execution of the test script produced a test results file. There were other
intermediate artifacts produced in the execution process, but these were the artifacts that
required configuration control.

Figure 71. Test-Related Artifacts for Configuration Management

The model-based process involves the configuration control on the model (an XML file), which
represents the requirements and has traceability links within the model back to the requirement
specification. These links are traced forward to the test vectors automatically during the test
vector generation process. The test design process is inherent in the model-based generation
process. Test drivers that are generated from the object mappings and a test driver schema are
not maintained under configuration control because they can be regenerated. The key benefit,
as discussed in Section 14.3.6, is that detailed artifacts are produced by common elements from
generators; for example, if a particular interface changes, only one object mapping needs to be
changed, and all test scripts associated with that object mapping are regenerated. In contrast,
with the traditional process, each test design and test script that references a particular input
would need to be checked out of configuration control, modified, and then checked in after
proper reviews were conducted.

14.4 KEY GUIDELINES

Most of the key guidelines provided in this section are listed in the summary provided in Section
15.1.

14. Medical Device Product Line

120

14.5 RESULTS

The results were significant. The company realized improvements in the way that technical
specifications were developed. Early modeling helped identify requirement problems early,
allowing changes to be made at minimal cost, as opposed to the older process where all
changes would go through a formal change control board.

The improved design for testability reduced the effort by the designers and implementers that
used early tests to reduce their unit testing effort. They were able to request that the test
engineers add test constraints to the model requirements.

The test infrastructure group redesigned the simulation and test infrastructure services, reducing
the variability in the way that the test services would be used and reducing the variation in the
test execution.

The model-based test generation was more comprehensive than the manually generated tests
cases. Also, it was efficient to have the tools generate test cases and tests scripts of hundreds
of lines of code rather than producing and maintaining the test script code manually.

The models were easier to review, both from a requirements point –of view and a test
completeness point –of view.

The bottom line is that the critical Phase III project was completed 9 weeks ahead of schedule,
a new feat for this company. In the competitive marketplace, this company started on a different
path to reduce cost and schedule to meet the high-assurance demands of systematic V&V.

This case study reflects the need for a highly successful company to engineer its model-based
testing. There are many hidden benefits related not only to more effective testing but also to
improved requirements and design. This case study reflects on this mature approach to model-
based testing that has been implemented in a few member companies.

121

15. SUMMARY

These case studies provide evidence that model-based testing improves requirements, design,
and tests, while increasing reliability and reducing cost and schedule. The most effective
organizations have established an engineering-based approach to model-based testing.

This section summarizes some of the key guidelines in the report. These guidelines include both
organizational and technical suggestions, with links where appropriate to specific case studies
for details and examples.

15.1 SUMMARY OF KEY GUIDELINES

• Start with pilot projects to support organizational change. Stakeholders need to see
quickly demonstrated evidence within their organization to commit to use model-based
testing on a scheduled deliverable. It is often good to select a pilot project from a
recently completed project because the requirements are often well-understood, even if
not well-documented. In addition, existing test cases and test results can provide a more
objective basis for comparison with the model-based tests.

• Transition from a pilot project to a thread of an existing project. Select a thread that
is likely to change often or have features extend it. The most leverage and benefits come
from reusing and evolving one or more related models and the associated test
infrastructure. See Section 14 for details.

• Identify the right projects for transitioning from an existing process to a new
process. Select a project prior to the requirement phase so that modeling can start early
and help improve the requirements, while providing sufficient time to collaborate with the
design team to improve the interfaces to support testability.

• Start requirement modeling early. Identifying requirement defects sooner reduces
rework cost.

• Use interface-driven modeling to ensure the component under test has testable
interfaces. Define the requirements for each component in terms of the known
interfaces.

• Use a goal-oriented modeling approach. Work backward by identifying each output at
the component interfaces. Prioritize the ordering of the modeling for requirement threads
to correspond with the expected development and/or integration of the component
outputs associated with those requirement threads.

15. Summary

122

• Identify and model interfaces separately from behavioral requirements. This
approach maximizes reuse and ensures a single point of definition for each modeled
interface. Include a model reference to interfaces for components that are related to the
functional requirements they are modeling. This approach ensures that the model of an
interface is defined in one place. If changes occur to the interface, only one model needs
to be changed. See Section 14.3.6 for details.

• Capture requirement traceability links in the requirement models. This approach
provides important information to improve the review process. Tracing the requirements
also helps in assessing the completeness of the model with respect to a requirement
and related specification documents. Early modeling can identify incompletenesses in
requirement documents that can be corrected early, providing better input to designers
and implementers. See Sections 2.5.2.2 and 13.4.3 for examples and details.

• Ensure that requirement models capture negative cases as well as the positive
cases of a requirement. The negative case often can uncover problems such as the
problem that was the likely cause of the MPL crash (see Sections 4.4) but also represent
important safety or security cases as described in Section 12.4.3.

• Establish modeling practices. Use practices such as naming conventions, terms that
can be reused throughout the model, constants, and traceability links. See Section
10.4.1 for examples.

• Model continuously and in parallel with development. This approach can reduce
testing effort for designers and implementers and ensure that the design is testable. This
also results in an evolving automated test suite that should be executed for every build
(e.g., daily, bi-daily, or weekly) of the system. This approach also supports early
identification of bugs and it makes it easier to understand and isolate the specific
changes that introduced a defect into the system.

• Extend requirement-based test models. Add test constraints to a model to support
implementation-derived requirements identified by the designer or implementer to
reduce the unit testing effort traditionally performed by implementers. See Section 14.3.5
for details.

• Leverage the expertise of test automation experts. These experts often understand
the most robust set of services for interfacing with the test environment as well as details
related to initialization. See Section 14.3.6 for details.

• Develop common object mappings that correspond to modeled interfaces. Ensure
that the test driver schema isolates test environment specifics such as initialization and
declaration that can be controlled by the test automation expert. See Section 14.3.6 for
details.

• Develop and evolve one test driver schema per environment. Coordinate effort
through a lead test automation expert that leverages common logging, reporting,
configuration management and measurement support. Ensure the test driver schema

15. Summary

123

maps requirement identifiers to test scripts for more efficient test failure analysis. See
Section 13.3.1 for details.

• Develop test driver schema that support output and state variable initialization.
Ensure that the test driver schema properly initializes actual outputs to something other
than the expected output value and properly initializes and propagates state data to
expose potential failures. See Sections 4.4 for examples and details.

• Leverage internal monitoring capabilities of an application, such as a data
recorder, to capture the actual outputs of a test. For some types of applications that
do not have internal monitoring, it is necessary to embed monitoring and logging
functionality within the test driver so that, during test driver execution, the outcomes and
state changes within the target environment are captured to support test results analysis.
See Sections 8 and 9.4.5 for details.

• Model the dynamic generation of database content. This modeling avoids the costly
effort of developing and maintaining a “gold” database. See Section 12.4.1 for details.

• For more complex systems, analyze the interfaces, API dependencies, and
requirement dependencies. This analysis ensures proper design of models that should
be associated with test driver object mappings. This can maximize the reuse of common
interface models and object mapping definitions to reduce cost and maintenance and
can reduce effort related to test sequencing. See Sections 13 and 14 for more details.

15.2 RESULTS AND BENEFITS

This set of case studies provides a short list of examples that summarize some of the benefits of
model-based testing. Sections 15.2.1 through 15.2.4 provide a few other member company
remarks with some perspective on the tangible as well as the intangible ROI associated with
model-based test engineering.

15.2.1 TEST INFRASTRUCTURE ESTABLISHED DURING PILOT PROJECT

One company stated there are many tangible benefits from model-based testing, but
surprisingly, there are several intangible ROI benefits. At the end of the pilot demonstration, the
process and the supporting test infrastructure were 80% to –90% complete and relatively stable
to support all follow-on testing. In addition, the company identified several requirements for the
testing infrastructure that could further automate the process or change the underlying process
for the organization. For example: once an automated test suite exists, it can be run each time a
build of the system occurs. This approach allows developers to identify bugs earlier in the
development process and makes it easier to understand the specific changes that introduced a
defect into the system rather than waiting weeks or months before manual testing is performed.

15.2.2 COMPLETED PROJECT AHEAD OF SCHEDULE

The company that produces medical devices stated prior to the use of TAF that testing was
more than 50% of their effort. Using model-based testing, they completed the development and
verification 9 weeks ahead of schedule, a new feat for the company.

15. Summary

124

15.2.3 SIGNIFICANT REDUCTION IN RETESTING

The company producing medical devices stated that after a clinical trial of a product, they had to
completely retest the entire product. They claimed that by using the model-based test suite that
had been developed for the initial release, they were able to complete all their required testing
five times faster than their existing script-based testing process.

A second member pointed out similar results. The key ROI gains are obtained with each
addition regression testing session that occurs. Currently, the time required for regression
testing is essentially the same as it is to test the first time. With this automated, model-based
testing process, the time to perform regression testing is easily less than 50% of the original
time and cost and can be as little as 10% of the original test time and cost.

15.2.4 TAF FOR AVIONICS AND AIRCRAFT SYSTEMS

Lockheed Martin has used the TAF for many years and has contributed significantly to the
evolution and usage requirements. None of the case studies in this report reference the
following applications, which come from this release citation:

Some of the areas we have applied the TAF technology are in the Vehicle Systems Flight
Control Laws, the Mission Systems Middleware, Digital Radio Controls, Auto Logistics AFB
Basing and Flight Ops, Branch Health and Mode Determination software testing, and
Reliability Enhancement and Re-engineering Program (RERP) Design and Test. These
applications have been applied to various elements of multiple programs that include JSF/F-
35, F2, and C5. Prior pilot applications performed on T-50 and F-16 showed applicability to
legacy programs and would be beneficial in future upgrades to existing programs.

Applications on future upgrades to existing program that have extensive tabular formatted
requirements have been identified as highly adaptable to the TAF technology through the use
of TTM and T-VEC.

On one application related to Flight Control LAWS (Safety Critical software) it was
determined that the application of TAF would significantly reduce the test efforts related to
each release of the software. Typically there would be 6-12 releases for each version of this
software with a total savings greater than six million dollars just in the test effort portion. Even
more important would be the reduction in schedule time for the releases, which would result
in greater dollar savings related to other personnel supporting the efforts.

In one experience we discovered some critical errors (such as potential divide by zero) during
the design effort that would not have been caught until the test phase of the development and
in some cases may not have been detected until much later when these unique conditions
were met. In another experience we discovered an error, early in the development cycle, with
the code generation tool being used. Benefit analysis on software development shows that
the cost of resolving these errors grows exponentially as they move through the development
phases. The actual cost savings of these can only be imagined but definitely go into the
millions for our type software.

15.3 CONCLUSION

These case studies provide evidence that model-based testing applies to many types of
applications, such as embedded systems, language processing, client-server and web systems,
distributed processing systems, command, control and monitoring, information processing
business logic (IT systems), database, security, smart cards, and life-critical systems such as
medical devices and avionics systems. Model-based has helped many organizations improve

15. Summary

125

the requirements, driven improvements in the design of the target system and simulators,
improved the test infrastructure with design for testability, guided the creation of modular
requirement specifications, and demonstrated the cost benefits of modeling requirements early,
with significant reduction in cost and schedule.

The TAF team helped organizations in the adoption process, including the structuring of a
multiteam modeling and test infrastructure; recommended model-based review practices;
created tailored training; and shown how to use model-based measurement for project
management.

15. Summary

126

This page intentionally left blank

127

 SCR REQUIREMENT MODELING

The modeling language for the SCR tool is similar in syntax to a simplified programming
language. It has expressions for defining arithmetic computations and logic relationships,
sometimes referred to as constraints. There are a few special language constructs that support
the description of events. The semantics of an SCR model are declarative as opposed to
imperative like a programming language.

This appendix discusses the rules for using the model, typically referred to as the method. As
shown in Figure 72, inputs and outputs represent the system's interaction with the environment
in which it operates. Most often, inputs and outputs directly represent component interfaces.
Terms are intermediate computed values and provide the means to decompose the model
hierarchically. Mode machines represent internal states as simple, finite state machines.
Assertions are named conditional expressions that are referenced by name within the model.

Figure 72. Top-Level Concept for Defining SCR Models

MONITORED AND CONTROLLED VARIABLES

A monitored variable corresponds with inputs of a function and an interface of the system. It
represents a logic or environmental quantity that the system must monitor or use as input, and it
must be mapped to an interface of the system or component under test.

A controlled variable corresponds with outputs of a function and an interface of the system. It
represents a logic or environmental quantity that the system must set or control, and it must be
mapped to an interface of the system or component under test.

REPRESENTING FUNCTIONAL VIEW

The functional view of a system is defined using behavioral elements to specify the set of
relations between entities that represent the interfaces of the system. The behavioral aspects of

SCR/TTM Model
of a Component

Environment Environment
Terms

Modes Assertions

Inputs Outputs

A. SCR Requirement Modeling

128

the models define the required functionality of the component using tables to relate monitored
variables (inputs) to controlled variables (outputs). There are three basic types of tables (with
two variants):

• Condition Table (with mode or modeless)

• Event Table (with mode or modeless)

• Mode Transition Table

The SCR modeling approach permits Condition, Event, and Mode Tables to be combined. This
allows complex relationships between monitored and controlled variables to be described in
terms of simpler relationships that are modeled in Condition, Event, or Mode Tables. The
concept of dependency relationships is supported using a mode class or a term variable, as
shown in Figure 73. A mode class is a state machine, where related system states are called
system modes, and the transitions of the state machine are characterized by events. A term is
any function in input variables, modes, or other terms. A condition is a predicate characterizing
a system state. An event occurs when any system entity changes value.

Figure 73. Conceptual SCR/TTM Model of Table Dependencies

CONDITIONS

A condition is a predicate (i.e., a statement that is true or false) about the values of monitored,
controlled, term, or mode class variables. A condition is represented by a Boolean expression.
Compound conditions are formed by using logical operators AND, OR, and NOT. For example,
given conditions C, C1, and C2:

Compound conditions: Is true when:

Condition Tables

Event Tables

Mode Tables

Condition Tables

Event Tables

Condition Tables

Event Tables

Mode Tables

Monitored
Variables

Controlled
Variables

Term
Variables

O
ut

pu
t S

pa
ce

Condition Tables

Event Tables

Condition Tables

Event Tables

Mode Tables

Common
Conditions

In
pu

t S
pa

ce

Assertions

A. SCR Requirement Modeling

129

NOT C C is not true
C1 AND C2 Both C1 and C2 are true
C1 OR C2 C1 OR C2 OR both are true

The operations are listed in the descending order of precedence. Use parentheses to alter the
evaluation order. By definition, each compound condition is also a condition.

EVENTS

An event occurs when a condition changes value. Hence, any condition has two kinds of events
associated with it: those events that occur precisely when the condition changes from false to
true and those that occur when the condition changes from true to false. An event occurrence is
a moment in time when a condition’s value changes. Each event occurrence is instantaneous
(takes zero time) and atomic (all or none occurs).

Event expressions are used to represent the set of events associated with a particular condition.
SCR uses the notations @T(C) and @F(C) to represent event expression denoting change in
the state of a condition C. An event denoted by @T(C) occurs at any moment in time when the
condition C transitions from false to true (Boolean expression evaluates to true). Similarly,
@F(C) signifies any event of the condition C becoming false.

For example, consider the monitored variable mon_Push_Button, representing the state of a
push button. At any moment in time, the button is in one of two possible states: pressed or
released. The following event expressions denote the events corresponding to changes in the
state of the button:

Event expression: Represents:
@T(mon_Push_Button = pressed) The event corresponding to a change
in the
 state of the button from released
to pressed.
@F(mon_Push_Button = pressed) The event corresponding to a change
in the
 state of the button from pressed
to released.

The bulleted list provides an inductive definition of SCR events. In order to define such a
variable it is enough to supply a name and an event expression. In contrast with other variables,
an event variable does not have an initial value and is not considered to be a part of the system
state. Also, an event variable name may optionally contain the symbol @ as a first character to
distinguish from the other kinds of variables.

• A Boolean combination of event expressions is also an event expression.

• Basic events. Let c be a Boolean expression, and let f be an arbitrary expression such
that neither c nor f includes occurrences of event variables. Then the following are basic
event expressions:

− @T(c) means that the value of c becomes TRUE in the current state whereas it was
FALSE in the old state. @T(c) represents c’ AND NOT ‘c.

A. SCR Requirement Modeling

130

− @F(c) means that the value of c becomes FALSE in the current state, whereas it
was TRUE in the old state. @T(c) represents NOT c’ AND ‘c.

− @CHANGED(c) means that the value of c changed from the old to the new state.
@CHANGED(c) represents c’ != ‘c (where "!=" means ≠; in SCR/CoRE textual
notation).

GUARDED EVENTS

Guarded events are basic events that are combined logically with a conditional expression. In
order for guarded events to occur, some constraint must hold “WHEN” the event expression is
satisfied. Some organizations have found that WHEN semantics are not sufficient for modeling
their systems and have developed alternative guards referred to as WHERE and WHILE. This
section introduces these alternatives. The following alternatives are supported in the scr2tvec
translator through a command-line option, but they are not currently supported in the SCRtool:

• "WHEN" events. Let d be a Boolean expression, and let e be an event expression. Then,
e WHEN d means that e occurred and that d was TRUE in the old state, where the event
expression e is represented by @T(c). In general, e WHEN d represents e AND ‘d.

• "WHERE" events. Let d be a Boolean expression, and let e be an event expression.
Then, e WHERE d means that e occurred and that d is TRUE in the new state, where
the event expression e is represented by @T(c). In general, e WHERE d represents e
AND d’.

• "WHILE" events. Let d be a Boolean expression, and let e be an event expression. Then
e WHILE d means that e occurred and that d is TRUE in both the old and new states,
where the event expression e is represented by @T(c). In general, e WHILE d
represents e AND ‘d AND d’.

In order to define events, the state before the transition, also called the "old" state, and the state
after transition, also called the "new" state must be specified. The transition between the old and
the new states is done in several steps defined by the tables associated with the variables. The
states between the old state and new state are called transient states. An important constraint
associated with the state transitions states that for any state transition and for any variable, the
variable is allowed to change its value once, at most, in the sequence of states including the old
state, the new state, and all the transient states in between. This constraint is called the Single
Change Constraint (SCC).

Given a system entity var, the value of var pertaining to the old state is explicitly designated as
’var, whereas the value of var pertaining to the new state is explicitly designated as var’.
Usually, when there is no explicit denotation with an apostrophe, var may designate either the
value of var pertaining to the old state or the value of var pertaining to the new state, depending
on context. For example, in WHEN (... var ...), var is treated as ’var, whereas in WHERE (... var
...), var is treated as var’. The following list summarizes high-level state behavior of an SCR
model (see Figure 1):

• A high-level state is an assignment of proper values to all the system entities.

A. SCR Requirement Modeling

131

• The states may be visible from outside (public) or be transient (private) states within a
state transition between two public states.

• A high-level state transition is initiated by an external event represented by a
modification of the current value of a unique monitored variable (One Input Assumption
[OIA]).

• The initial event causes a ripple (cascade) of internal events where:

− Every entity is modified at most once (due to SCC).

− Monitored variables are not modified after the initial event (due to SCC).

TERMS

The definition of several controlled variable functions depends on the expression of monitored
variables. Rewriting the same expression through the specification can be tedious and error-
prone. To simplify the specification and to not such dependencies explicitly, SCR provides
terms. A term is a name expression for one or more monitored variables. Each term has a value
and a type of its constituent monitored variables and the operator applied.

Using terms, to abbreviate or replace lengthy expression with names. The notion of term in SCR
is analogous to the concept of language macros (textual replacements) in some programming
languages. The following list provides some of the most common reasons for defining terms:

• To shorten a complex or lengthy event expression used in one or more Event Tables or
compound condition used in one or more Condition Tables. The use of properly defined
terms reduces inconsistencies and improves the clarity of the model.

• To abstract a complex expression and hide its details. The modeler may not have
finalized the details or may want to change them later.

A. SCR Requirement Modeling

132

This page intentionally left blank

133

 CODE COVERAGE AND STRUCTURAL TESTING

Potential users of TAF and T-VEC often ask about support for code coverage. At the higher
levels of safety and criticality, DO-178B requires evidence showing 100% structural code
coverage from tests executed against the code. As shown in Figure 74, TAF/T-VEC provide
model coverage; that is, from the model, the tools check to make sure that a test vector is
produced for every translated thread of the model. If a test vector is not produced, the model
has a defect, and the coverage report provides a link to that particular thread where the model
defect is likely to exist. See Section 10.4.3) for further details.

Figure 74. TAF Model Coverage Versus Code Coverage

The following definitions apply to structural testing and the associated code coverage:

• Condition. A condition is a leaf-level Boolean expression. It cannot be broken down into
a simpler Boolean expression.

B. Code Coverage and Structural Testing

134

• Decision. A decision is a Boolean expression that controls the flow of the program, for
instance, when it is used in an if or while statement. Decisions may be composed of a
single condition or expressions that combine many conditions.

Structural testing criteria characterize the level of coverage of the code:

• Statement Coverage. Every statement in the program has been executed at least once.

• Decision Coverage. Every point of entry and exit in the program has been invoked at
least once, and every decision in the program has taken all possible outcomes at least
once.

• Condition/Decision Coverage. Every point of entry and exit in the program has been
invoked at least once; every condition in a decision in the program has taken all possible
outcomes at least once; and every decision in the program has taken all possible
outcomes at least once.

• Modified Condition/Decision Coverage (MC/DC). Every point of entry and exit in the
program has been invoked at least once; every condition in a decision in the program
has taken on all possible outcomes at least once; and each condition has been shown to
affect that decision outcome independently. A condition is shown to affect a decision’s
outcome independently by varying just that decision while holding fixed all other possible
conditions.

See [Hayhurst 2001] for a more in-depth summary of structural coverage.

There are various ways to assess code coverage, and there are some qualified tools that
provide code coverage measurements. The typical process involves instrumenting the code that
is produced manually or through code generation, executing the tests against the instrumented
code, and assessing the code coverage. The TAF tools are integrated with different code
coverage tools as reflected in Figure 74. One qualified tool is produced by LDRA as shown in
Figure 75.

B. Code Coverage and Structural Testing

135

Figure 75. LDRA and TAF Integration

The TAF/T-VEC tools have translation options to create model threads that are capable of
achieving MC/DC test coverage. Consider the model shown in Figure 76 and the associated
code coverage information shown in Figure 77, which indicates that 12 out of the 12 paths were
covered by the generated tests. If all tests pass, and there is complete code coverage, then
there is a strong argument that the code fully satisfies the specified functionality of the model.
The final step for testing the code is running the same tests through target code that will be the
final certified code. If all tests pass, there is a strong argument that the code is suitable for
certification.

Figure 76. Simple Model for Code Coverage Example

B. Code Coverage and Structural Testing

136

Figure 77. Coverage Analysis Screenshot

Screenshots from Bullseye Coverage

137

MEASUREMENT INFORMATION PRODUCT AND
MEASUREMENT CONSTRUCT

The measurement and analysis process provides the mechanisms for identifying and
addressing information needs of all types and levels. It addresses both the selection of
appropriate measures to satisfy the information needs and the collection and analysis of the
data. Information products make up the primary output of the measurement process. The
generic structure of a measurement construct can be defined in terms of the information model,
as shown in Figure 78. The information model shows how the attributes of specific software and
systems entities are related to the information needs of the measurement user. This section
works bottom-up from the information model of the measurement construct to describe the
relationship of the TAF attributes, base measures, derived measures, and indicators to various
information products supporting project measurement.

Figure 78. Measurement Construct

ATTRIBUTES

An attribute is a property or characteristic of a process or product that is the subject of
measurement. Four attributes support measurement analysis: DCPs (requirement threads),
object mappings, requirements, and variables.

Interpretation Estimate or evaluation that
provides a basis for decision making

Indicator

Model

Derived
Measure

Value resulting from applying the
algorithm to two or more measures

Algorithm combining measures and
decision criteria

Derived
Measure

Operations mapping an
attribute to a scaleMethod

Function Algorithm combining two or more
base measures

Value resulting from applying the
method to one attribute

Information Needs
Information

Product

Method

AttributeAttribute
Property relevant to
information needs Entities

Source: Adapted from ISO/IEC 15939, Software Measurement Process Framework by Joe Seppy

Base
Measure

Base
Measure

C. Measurement Information Product and Measurement Construct

138

BASE MEASURES

A base measure is a quantification of a single attribute obtained from some method or
operation. There are several possible base measures that can be obtained through operations
associated with the TAF attributes. Table 7 defines some key base measures.

Table 7. TAF Base Measures

Base Measure Explanation
Number of DCPs DCPs produced during a particular measurement period

Number of variables Input and output variables produced during a particular measurement
period that require a corresponding object mapping

Number of object mappings Object mappings specified during a particular measurement period

Total number of DCPs Sum of the DCPs measured from the start of the project

Total number of variables Sum of input and output variables measured from the start of the
project

Total number of object
mappings

Sum of specified object mappings measured from the start of the
project

Total number of requirements Sum of total requirements being modeled using TAF for the project

To better understand the progress being made during project development, it is necessary to
measure the DCPs, object mappings, and variables produced each week (these measures
could be tracked daily, monthly, or yearly). Although it is idealistic to think that the total number
of requirements will remain constant for a project, this seldom happens, so the total number of
requirements for a project also should be monitored weekly. Fortunately, the total number of
DCPs is generated as part of the status report for a project. Similarly, number of variables and
object mappings produced each week can be recorded at the same time as the DCPs, etc.

DERIVED MEASURES

A derived measure combines two or more base measures using a mathematical function. For
example, the requirements per DCP is a derived measure relating the number of requirements
to modeled-derived DCPs. If a project manager can estimate the total number of requirements
that must be modeled, it is possible to predict the total number of DCPs for the project. If the
rate of DCP production per week were known, the scheduled end date could be predicted. This
report assumes that the measurement period is weekly. Table 8 identifies some derived
measures.

Table 8. TAF Derived Measures

C. Measurement Information Product and Measurement Construct

139

Derived Measure Explanation
DCP rate The average number of DCPs produced per week

DCP rate (current week) The average number of DCPs produced per week at some week,
where current week is a week number starting from the beginning of
the project

DCP density The number of DCPs per requirement

Object mapping rate The average number of object mappings specified per week

Object mapping rate (current
week)

The average number of object mappings specified per week at some
week

Variables per DCP The number of input and output variables per DCP

These types of derived measures can be associated with an individual, project, project team,
product, product family, business unit, or an entire corporation. Project teams as well as project
team members will have different DCP rates and object mapping rates. These rates can vary
based on the modeling skills of the team members, and can be affected by requirement rework
caused by poorly documented or unknown requirements or poorly defined interfaces.

INDICATORS

An indicator is a base or derived measure or a combination of such measures that are
associated with decision criteria by means of a mathematical or heuristic model. Indicators often
are presented in graphic or chart form. Consider the following example that illustrates the use of
the measurement construct. Assume that project decision makers want to compare the DCP
density of some current project to previously captured data because it is believed that a DCP
density in a certain range provides optimal requirement-to-test traceability. Assume the
following:

• Base measures for DCPs and requirements have been collected.

• The number of requirement headers is the base measure for number of requirements,
where a requirement header is associated with a body of requirement text.

• The data collected from prior projects estimates the number of DCPs per requirement.

Starting from the bottom of Figure 79, the two attributes are DCPs and requirements. Assume
some sample project developed 223 DCPs in models for 21 requirements. Dividing the number
of DCPs by the number of requirements produces a derived measure of 10.6 DCPs per
requirement (i.e., DCP density). Compare this derived data to historical data, where the density
was 16.3 DCPs per requirement. A possible interpretation of this information product is that the
requirement traceability accuracy for the current project is better than the organizational
average. If the current DCP density has a variance greater than 10 from the organizational
average, then it may be necessary for the requirement engineers to attend a training class on
techniques for developing better requirements.

C. Measurement Information Product and Measurement Construct

140

Figure 79. Measurement Construct Example

Mode
l

Compare DCP density to
organizational data

Compare requirement
density to organizational
Average. If deviation is
greater than +/ - 10, have
requirement engineers
attend course on
disciplined approach to
requirements development.

Derive
d Measure 10.6 DCP

s
per Requirement

Requirement
traceability
accuracy (DCP
Density)

Function Divide (DCP per requirement)

Attribute Attribute Entities

Count
produced
by
TAF

Method

223 DCP
s

Requirement
Thread (DCP)

Method

Base
Measure

Count
only requirement
headers

21 Requirements

Requirements TAF
Data

Base
Measure

10.6 DCP
s

< Organizational
average of 16.3 per
requirement

Indicator Interpretation

Information
Product

Indicator summarized for
requirement documents

Information
Needs

141

LIST OF ABBREVIATIONS AND ACRONYMS

Accreditation Process

ACR Access Control Rules

AID Application Identifiers

APDU Application Protocol Data Units

API application programming interface

BNF Backus-Naur Form

BSI Basic Service Interface

CCC Card Capability Container

CICS Customer Information Control System

CoRE Consortium Requirements Engineering

CP Command Processor

CST Common Criteria Security Target

DBA database administrator

DBMS database management system

DCP Domain Convergence Path

DP Data Processor

DTD Document Type Declaration

ECI Environment Control Interface

FAA Federal Aviation Administration

FDA Food and Drug Administration

FGS Flight Guidance System

FIPS Federal Information Processing Standard

FMS Flight Management System

FTP File Transfer Protocol

GSC-IS Government Smart Card Interoperability
Specification

GUI graphical user interface

Abbreviations & Acronyms

142

HTML HyperText Markup Language

ID identifier

IEC International Electrotechnical Commission

IEEE Institute for Electrical and Electronics Engineers,
Inc.

IP Interface Processor

IPP Internet Printing Protocol

ISO International Organization for Standardization

IT information technology

JCL Job Control Language

JDBC Java Database Connectivity

LDRA Liverpool Data Research Associates

MC/DC Modified Condition/Decision Coverage

MPL Mars Polar Lander

NIST National Institute of Standards and Technology

ODBC Open Database Connectivity

OIA One Input Assumption

OS operating system

PKI public key infrastructure

RERP Reliability Enhancement and Re-engineering
Program

ROI return on investment

SCC Single Change Constraint

SCR Software Cost Reduction

SFR Security Functional Requirement

SPS Strategic Problem Solving

SPS Strategic Problem Solving

SQL Structured Query Language

SRS System Requirement Specification

TAF Test Automation Framework

TCAS Traffic and Collision Avoidance System

TDM Touchdown Monitor

TOE Target of Evaluation

TSF TOE Security Functionality

TTM T-VEC Tabular Modeler

Abbreviations & Acronyms

143

UK MoD United Kindom Ministry of Defence

V&V Validation and Verification

VCEI Virtual Card Edge Interface

VM virtual machine

XML eXtensible Markup Language

XPIF Printing Instructions Format Specification

Abbreviations & Acronyms

144

This page intentionally left blank

145

REFERENCES

[Alspaugh 1992] Alspaugh, T.A., S.R. Faulk, K.H. Britton, R.A. Parker, D.L.
Parnas, and J.E. Shore. Software Requirements for the A-7E
Aircraft, Tech. Rep. NRL/FR/5546-92-9194. Washington, DC:
Naval Research Lab, 1992.

 Blackburn, M.R., R.D. Busser, A.M. Nauman, R.
Knickerbocker, and R. Kasuda. Mars Polar Lander Fault
Identification Using Model-based Testing. Lockheed Martin
Joint Symposium, Radisson Universal, Orlando, 2001.

[Blackburn 2003] Blackburn, Mark, Robert Busser, and Aaron Nauman.
“Understanding the Generations of Test Automation.” Presented
at STAREAST 2003, Orlando, Florida, May 12-16.
http://www.software.org/pub/externalpapers/understanding_gene
rations_of_test_automation.pdf

[Blackburn 2004] Blackburn, M.R., A. Nauman. Strategies for Web and GUI
Testing, SPC-2004014-MC, version 1.0. Herndon, Virginia:
Software Producitivity Consortium, 2004.

[Boden 2004] Boden, L., and R. D. Busser. “Adding Natural Relationships
To Simulink Models To Improve Automated Model-Based
Testing.” Digital Avionics Systems Conference, Salt Lake
City, Utah, October 2004.

[Boehm 1984] Boehm, B.W. “Verifying and Validating Software
Requirements and Design Specifications.” IEEE Software.
(January 1984).

[Busser 2001] Busser, R.D., M.R. Blackburn, and A.M. Nauman. “Automated
Model Analysis and Test Generation for Flight Guidance
Mode Logic.” Digital Avionics System Conference, 2001.

[Consortium 1997] Software Productivity Consortium. Test Automation
Framework, SPC-97055-MC, version 01.01.00. Herndon,
Virginia: Software Productivity Consortium, 1997.

[Consortium 1998] Software Productivity Consortium. Specification
Transformation to Support Automated Testing, SPC-97036-
MC, version 03.00.02. Herndon, Virginia: Software
Productivity Consortium, 1998.

References

146

[Consortium 2000] Busser, R. D., M. R. Blackburn, and A. M. Nauman. Rockwell
Pilot Project, SPC-2000045-MC, version 01.00.00. Herndon,
Virginia: Software Productivity Consortium, 2000.

 Software Productivity Consortium. Rockwell Pilot Project
Technical Note, SPC-2000045-MC, Version 01.00.00.
Herndon, Virginia: Software Productivity Consortium, 2000.

 Software Productivity Consortium. Applying the Test
Automation Framework With Use Cases and the Unified
Modeling Language, SPC-2002048-MC, Version 01.00.00.
Herndon, Virginia: Software Productivity Consortium, 2002.

[Consortium 2003a] Software Productivity Consortium. Model-Based Development
and Automated Testing, SPC-98070-MC, version 02.05.00.
Herndon, Virginia: Software Productivity Consortium, 2003.

[Consortium 2003b] Software Productivity Consortium. Testing Complex Systems,
SPC-2003079-MC, version 01.00.00. Herndon, Virginia:
Software Productivity Consortium, 2003.

[Consortium 2003c] Software Productivity Consortium. Guidelines for Software
Tool Qualification, SPC-2003064-MC, version 01.00.
Herndon, Virginia: Software Productivity Consortium, 2003.

[Consortium 2003d] Software Productivity Consortium. Guidelines for Using Test
Automation Framework Measures, SPC-2003056-MC,
version 01.00. Herndon, Virginia: Software Productivity
Consortium, 2003.

[Consortium 2003e] Software Productivity Consortium. Test Automation
Framework for T-VEC and Simulink, SPC-2003048-MC,
version 01.00 Herndon, Virginia: Software Productivity
Consortium, 2003.

[Consortium 2004a] Software Productivity Consortium. Guidance for Achieving
Mission Assurance in Software-Intensive Systems, SPC-
2004041-MC, version 01.00. Herndon, Virginia: Software
Productivity Consortium, 2004.

[Consortium 2004b] Software Productivity Consortium. Model-Based Verification
and Validation for Security Requirements of Systems, SPC-
2004034-MC, version 01.00. Herndon, Virginia: Software
Productivity Consortium, 2004.

References

147

[Consortium 2004c] Software Productivity Consortium. Requirement-Based
Verification Sign-Off for Subcontract Integration Compliance,
SPC-2004022-MC, version 01.00. Herndon, Virginia:
Software Productivity Consortium, 2004.

[Consortium 2004d] Software Productivity Consortium. Automatic Code
Generation: State of the Practice, SPC-2004010-MC, version
1.0. Herndon, Virginia: Software Productivity Consortium,
2004.

[Consortium 2004e] Software Productivity Consortium. Strategies for Web and
GUI Testing, SPC-2004014-MC, version 1.0. Herndon,
Virginia: Software Productivity Consortium, 2004.

[Faulk 1993] Faulk, S.R., L. Finneran, J. Kirby, A. Moini, Consortium
Requirements Engineering Guidebook, SPC-92060-CMC.
Herndon, Virginia: Software Productivity Consortium, 1993.

[Hayhurst 2001] Hayhurst, Kelly J., Dan S. Veerhusen, John J. Chilenski, and
Leanna K. Rierson. A Practical Tutorial on Modified
Condition/Decision Coverage, NASA/TM-2001-210876.
http://techreports.larc.nasa.gov/ltrs/PDF/2001/tm/NASA-2001-
tm210876.pdf

[ISO 1995a] International Organization for Standardization. Interindustry
Commands for a Cryptographic Toolbox. ISO/IEC 7816-8 (E).
Geneva, Switzerland: International Organization for
Standardization, 1995.

[ISO 1995b] International Organization for Standardization. Interindustry
Commands for Interchange. ISO/IEC 7816-4 (E). Geneva,
Switzerland: International Organization for Standardization,
1995.

 International Standards Organization. Common Criteria for
Information Technology Security Evaluation. Version 2.1,
ISO/IEC 15408, CCIB-99-031, CCIB-99-032, CCIB-99-033.
Geneva, Switzerland: ISO, August 1999.

[Miller 1998] Miller, Steve. “Specifying the Mode Logic of a Flight Guidance
System in CoRE and SCR.” Second Workshop on Formal
Methods in Software Practice (FMSP'98). Clearwater Beach,
Florida, March, 1998.

[Offutt 1999] Offutt, A.J., Generating Test Data From
Requirements/Specifications: Phase III Final Report, George
Mason University, November 24, 1999.

[Oracle 2000] Oracle Corporation. Oracle8 Security Target, Release 8.0.5,
Security Evaluations. Redwood Shores, California: Oracle
Corporation, April 2000.

References

148

[Pettichord 2002] Pettichord B. "Design for Testability ." Presented at the Pacific
Northwest Software Quality Conference (PNSQC), October
2002.
http://www.io.com/~wazmo/papers/design_for_testability_PN
SQC.pdf

 DO-178B/ED-12B - Software Considerations in Airborne
Systems and Equipment Certification, Radio Technical
Corporation for Aeronautics Special Committee 167 (RTCA)
December, 1992.

[Safford 2000] Safford, Ed L. Test Automation Framework, State-based and
Signal Flow Examples. In Proceedings, 12th Annual Software
Technology Conference. Salt Lake City, Utah, April 30-May 5,
2000.

[SSCI 2005] Systems and Software Consortium, Inc. Objective Measures
for V&V and Software Reliability, SPC-2004010-MC, version
01.00. Herndon, Virginia: Systems and Software Consortium,
Inc., 2005.

[Tsai 1990] Tsai, W. T., D. Volovik, and T. F. Keefe. “Automated Test
Case Generation for Programs Specified by Relational
Algebra Queries”, IEEE Transactions on Software
Engineering 16(3):316-324, March 1990.

[White 1980] White, L. J., and E. I. Cohen. “A Domain Strategy for
Computer Program Testing.” IEEE Transactions on Software
Engineering Vol. SE6(3):247-257, May 1980.

